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PREFACE

I AM led to offer the present translation to the public,

from the conviction that such a work is very much needed

in our Academies and Colleges. In fact, a long experience

in teaching has convinced me that, one great difficulty

which the young student has to encounter in the study of

Algebra and the higher branches of analysis, results from

the want of sound philosophical ideas on the fundamental

properties of numbers, and from the fact that the funda-

mental operations of Arithmetic are generally learned by

rote, and not pursued as a system of close reasoning.

Bourdon's treatise is the one adopted in the schedule of

public instruction by the University of France. In pre-

paring the translation, I have compared the seventh with

the twenty-ninth Paris edition, and endeavoured to select

the best methods of each. In this selection and arrange-

ment, I have followed the outline of the lectures upon

Arithmetic, delivered by the late Professors Bonnycastle
and Courtenay, in the University of Virginia. The tables

\have been re-arranged, and a collection of examples an-

nexed to the work.

The portions of Bourdon's very complete treatise on

the Extraction of Roots, Progressions, Logarithms, and

their applications, I have left out, because they are very

thoroughly discussed in the best treatises on Algebra

adopted by our Colleges and Universities. I have followed

(iii)



IV PREFACE.

the author in introducing some few of the signs and pre-

liminary definitions of Algebra. This usage the author

well defends, as follows : — "To attempt to make known

even some of the simple properties of numbers without

employing the signs of algebra, is to present them in a

manner very incomplete and little methodical. To use

these signs to some extent, enables us to establish the con-

nexion between these properties and their most important

applications. Moreover, the discussion of these properties,

a knowledge of which is essential to a thorough knowledge

of arithmetic, cannot properly enter into the elements of

algebra, without breaking the chain of theories which con-

stitute this other branch of mathematics. In fine, the

work is designed for those who wish to make the first steps

in the career of a scientific or liberal education in a sure

and profitable manner." The translator hopes the present

treatise will be a useful addition to the means of thorough

instruction in the United States.

C. S. V.

LoNOwooD, Va., 1857.
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" O^ THE

DIVERSITY

ELEMENTS OF ARITHMETIC

FIRST PART

INTRODUCTION.

1. We call magnitude, or quantity, every thing which admits

of increase or diminution. For example, lines, surfaces, solids,

intervals of time, weights, are magnitudes. We can only form

an exact idea of a magnitude by comparing it with another mag-

nitude of the same species, and this second magnitude is called

unity, in as much as it is to serve as a term of comparison for all

magnitudes of the same species. Thus, when we say that a

wall is twenty yards long, we are understood to have already ac-

quired the idea of the unit of length called yard, and we sup-

pose that, after having laid down the yard twenty times upon the

length of the wall, we have arrived at the end.

Unify, in mathematics, is then a magnitude of any species

whatever, taken arbitrarily or in nature, which serves as a term

of comparison for all magnitudes of the same species. Whence

it follows that there are as many species of units as of magni-

tudes.

The result of the comparison of any magnitude whatever with

its unit, is called number. A number is called entire when it is

(9)



10 NUMERATION.

the assemblage of several units of the same species or denomina-

tion. Thus, twenty dollars, thirty pounds, eight, twelve, fifteen

units, of any species whatever, are entire numbers.

A fraction is a part of a unit.

A fractional or mixed number is an assemblage of several

units of the same denomination, and of ^parts of this unit.

2. When, in enunciating a number, we add at the end of

that number the species of magnitude taken for the unit, the

number is called concrete. Thus, five feet, fifteen hours, six

leagues, are concrete numbers. The first time we pronounce a

number, the only sense we can attach to it, is the representing to

ourselves a unit of a certain denomination, to which we compare

another magnitude of the same denomination. But, by degrees,

the mind, which accustoms itself to abstractions, represents to

itself a collection of any like objects, of which each one is unity.

In this case the collection is called an abstract number, because,

in enunciating it, we make abstraction of the species of unit to

which we refer it. It is in this last light that we are to consider

numbers, in the discussion of the methods relating to the differ-

ent operations which we have to perform upon them, if we wish

to establish these methods so as to be able to apply them to all

possible questions.

NUMERATION.

8. The first researches on numbers should have, necessarily,

for object, the giving them names easy to retain ; and, as there

exists an infinity of numbers (since we can add to any number

whatever, already formed, a new unit, which gives rise to a new

number, also capable of being augmented by unity), it is neces-

sary to find some means of expressing all numbers by a limited

number of words, combined together in fit manner. Such is the

object of spoken numeration. .

Again, each one of the words which enter into the nomen-

clature of numbers being expressed by several letters, it was

found necessary to invent an abridged mode of writing these

words and their combinations, in order that the mind might be
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able to seize with more facility the reasonings which we are

obliged to make upon the numbers. This is the object of written

numeration, which consists in representing, by a limited number

of characters or ciphers, the numbers enunciated in the ordinary

language.

4. Spoken Numeration.— Though the nomenclature of entire

numbers is known, for the most part, to the young men for whom

these elements are written, we think it best to give a succinct,

yet methodical analysis of it ; for, the numeration which is adopted

in nearly all countries, is founded upon this nomenclature.

The first numbers are, one, two, three, four, Jive, six, seven,

eight, nine. These numbers are called simple units, or, units of

the first order. Adding a new unit to the number nine, we form

the number ten, which we regard as a new denomination, or, spe-

cies of unit called a ten, or, a unit of the second order. We
count by tens in the same manner as we have counted by simple

units. Thus, we say, one ten, two tens, &c., &c. ; ten, twenty,

thirty, forty, fifty ^ sixty, &c. Between ten and twenty there are

nine other numbers, which in English have the names, eleven,

twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nine-

teen ; names established by usage, showing by their derivation,

the addition of the preceding simple units successively to the

unit of the second order.

Between twenty and thirty, there are also nine numbers, which

are enunciated, twenty-one, twenty-two, &c. And thus we can

enunciate all the numbers up to ninety-nine. This last number,

augmented by one, gives ten tens, or the number one hundred,

which we regard as a new unit, or unit of the third order ; and

we count by hundreds as we have counted by units and tens.

Thus, one hundred, two hundred, &c. Placing successively

between the words hundred and two hundred, two hundred and

three hundred, eight hundred and nine hundred, and, after nine

hundred, all the numbers comprised between one and ninety-

nine, we form the names of all the numbers, from one hundred

to nine hundred and ninety-nine. We can see that, in the enun-

ciation of all these numbers, we have employed only the generic
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terras, one, two, three, four, five, six, seven, eight, nine, ten, hun-

dred, and words easily derivable from these.

Adding one .to the number nine hundred and ninety-nine, wc

obtain a collection of ten hundreds, or the number thousand,

which forms the unit of the fourth order. Having reached this

number it is agreed, in order not to multiply words too much, to

regard thousand as a new principal unit, before the name of

which we place the names of the nine hundred and ninety-nine

first numbers. Thus, we say, one thousand, two thousand, nine

hundred and ninety-nine thousand. A ten thousand forms the

unit of the fifth order ; a hundred thousand forms the unit of

the sixth order.

Now, placing between two consecutive numbers of the denomi-

nation thousand, as twenty ihoviSdiud and twenty-one thousand, the

names of all the numbers of lower denomination than thousands,

it is clear that we can thus enunciate all the numbers up to nine

hundred and ninety-nine thousand, nine hundred and ninety-

nine. This last number, augmented by one, gives ten hundred

thousand, or, a thousand thousand, to which collection the name

million has been given ; in the same manner the collection of

thousand millions is called billions; the collection of thousand

billions is called trillions, and so on to infinity.

We count by millions, billions, and trillions, as we have counted

by thousands ; and it is easy to see that, by joining to the generic

words indicated above, the words million, billion, trillion, quatr-

illion, quintillion, we will form the nomenclature of all imagi-

nable entire numbers. "VVe observe, in order to terminate this

part of the subject, that the million is the unit of the seventh

order, ten millions are units of the eighth order, hundred mil-

lions, units of the ninth order.

5. Written Numeration.— Though the above nomenclature is

very simple, still we would find much trouble in combining toge-

ther two or more large numbers, unless we had some abridged

mode of writing them. This is easily arrived at by reflecting a

little upon the nomenclature. We observe at once, that, among

the words employed to express numbers, the one part, as one, ten',
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hundredy thousand, ten thousand, &c., express the units of dif-

ferent orders, while the words, one, two, three, nine, express

how many times each of these sorts of units enter into a number.

This being established, if we agree to represent the first nine

numbers by the characters or ciphers,

123 4567 8 9

one, two, three, four, jive, six, seven, eight, nine^

the whole difficulty consists in finding a means of making these

ciphers express the different orders of unity which compose the

proposed number. Then, establishing this principle (purely con-

ventional), that every figure placed to the left of another, expresses

units of the order next higher to those of the other figure, or, in

other words, that when several characters, signifying the first nine

numbers, are written one after anotJier, then the first figure to the

right expresses simple units, the next on the left, tens, the third

figure counting from right to left, hundreds, the fourth, thou-

sands ; it is easy to see that, in general, we can represent all num-

bers by the aid of the preceding characters.

Character 0. — While this is true in general, nevertheless,

there are numbers which the preceding convention fails to repre-

sent, unless we agree to use an additional character. If we un-

dertake to write in figures the numbers, ten, twenty, thirty, &c.,

these numbers containing no simple units, we are compelled to

adopt a character which has no value by itself but which serves

to hold the place of the units of the order which is wanting in

the number enunciated. This cipher is 0, and is called zero.

By the aid of this cipher, the numbers, ten, twenty, &c., are

expressed by 10, 20, 30, 40, &c.

In the same manner, the numbers, one hundred, two hundred,

&c., which contain neither simple units nor tens, are written thus

:

100, 200, 300.

In general, the zero is a cipher which has no value by itself,

but which we employ to hold the place of the different orders of

9
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unity which may be wanting in the number to be written. The

other characters are called significant figures, and have two

values ', the one we call absolute, and is no other than that of the

figure itself considered alone; the other, we call relative, which

the figure acquires according to the place which it occupies to

the left of other figures.

Now, if we reflect that every number is composed of simple

units, of tens, of hundreds, &c.; that the collection of units of

each order is equal to nine; that, in the case where a number is

deprived of certain orders of units, we have a character to hold

their places, we will see at once that there is no entire number

which cannot be expressed by the aid of a certain combination

of the ten characters :—
1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Take the example, thirty-six billions, five hundred millions,

twenty thousand, four hundred and seven.

This number contains seven simple units, no tens ; four hun-

dreds, no ones of thousands ; two tens of thousands, no hundreds

of thousands ; no ones of millions, no tens of millions, five hun-

dreds of millions ; six ones of billions, and three tens of billions

;

then the number will be represented by 365000 20 407.

The system of numeration which we have just explained, has

received the name of the decimal system, because we emploj' ten

figures to express all numbers. Ten, or the number of characters

employed is called the base of the system.

6. Let us make, now, an important observation : it results from

the nomenclature, that every number can be divided into hun-

dreds, tens, and simple units; into hundreds, tens, and ones of

thousands ; into hundreds, tens, and ones of millions, etc. ; that

is to say, into sets of simple units, thousands, millions, &c., each

set expressed by three figures, except the last, which is that of

the units of the highest order, and which cannot have more than

two figures, and sometimes contains only one. When, then, we

have become familiar with the manner of writing the numbers of

three figures, it is sufiicient to write, successively, the different
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sets one to the left of the other; the set of units, the set of thou-

sands, the set of millions, &c. We can even commence at the

left; that is to say, write first the set of the units of the highest

denomination, and, to the right of this, the other sets in the order

of the magnitude of their units. It is thus that we ought to write

a number dictated in ordinary language. But it is necessary to

take care not to omit the zeros destined to replace the orders of units

which are wanting ; and there can never be any difficulty, since we

know that each set, except the first to the left, must always con-

tain three figures. Suppose, for example, that we have to write,

by aid of our characters, four hundred and six billions^ twenty-

eight millions^ two hundred and fifty thousandj and forty-eight.

Write in succession, each to the right of the other, the period

of hillions ; the period of millions; the period of thousands;

and,\sist\j, thsit of simple units ; we will have 406, 028, 250, 048.

7. It is upon the preceding observation that the following

means of translating into ordinary language, any number what-

ever written in figures, is founded. •

After having separated the number into periods of three figures

each, commencing at the right, enunciate successively each period

^

setting out from the first period on the left, and taking care to

give to each period the name which belongs to it.

Example: 70345601. This number, being divided 70,345,601,

is composed of seventy millions, three hundred and forty-five

thousand, six hundred and one.

8. It remains for us still, in order to complete the theory of

enumeration, to show the mode of writing fractions by means of

figures. But we must first give a clear and precise idea of frac-

tions, such as we consider them in arithmetic.

Let us suppose that we have to determine the length of a piece

of cloth. Taking the unit of length called yard, and applying

it as many times as possible to the length of the piece, two cases

may occur, either, after the unit has been applied a certain number

of times—15 times, for example, nothing will remain—or, we will

obtain a remainder less than the yard. In the first case, the piece

will contain an entire numher of yards. In the second case, it will
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be necessary in order to have the whole length of the piece, to add

to these 15 yards the fraction or part of the yard which remains.

But how value this part ? how compare it to the unit ? We can

first conceive this unit separated into two equal parts or halves;

and, if the remainder is exactly equal to one of these halves, we

say that the piece of cloth is 15 yards and one half long.

If the remainder is less or greater than a half^ yard, we con-

ceive this half divided into two new equal parts, called quarters.

Instead of dividing the unit into two or four equal parts, we

can conceive it to be divided into three equal parts called thirdsj

&c., &c.

Whence, we see that in order to form a clear idea of a fraction

of a unit of any denomination whatever, it is necessary to con-

ceive that this unit be divided into a certain entire number of

equal parts, and that we take one, two, three, &c., of these parts;

these parts thus taken, constitute what is called vl fraction. Thus,

the enunciation of a fraction involves necessarily two entire

numbers, to wit:— th^t which denotes into how many parts the

unit has lieen divided, called the denominator ; and that ichich

denotes how many of these parts are necessary to form the frac-

tion, called the numerator. For example, five-eighths of a yard,

thirteen-twentieths of a pound, are fractions. In the first, we

conceive the yard divided into eight parts, and that we take five

of these parts to form the fraction, eight is the denominator, and

five the numerator. . . . (We see that in the spoken numeration

of fractions the numerator remains unchanged in name, while

the denominator is generally changed by the addition of th.)

It results, also, from the above, that a fraction is a magnitude

referred to a part of the principal unit, which part we can con-

sider itself as a particular species of unit. Thus, the fraction

thirteen-twentieths of a yard, being composed of thirteen times

the twentieth of a yard, this twentieth is a particular unit, which

the proposed fraction contains thirteen times. This being estab-

lished, two fractions are said to be of the same species when their

denominator is the same, (the original or compound unit being

likewise the same). For example, five-twelfths and seven-twelfths
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of a yard are fractions of the same species ; but three-fourths and

two-thirds of a pound are fractions of different species or deno-

minations, because the denominators are different.

In order to express a fraction in figures, we place the numera-

tor above the denominator, with a line between. Thus, the frac-

tion three-fourths is denoted by |, seven-twelfths by j'^^-

Reciprocally, |, ||, represent the fractions, seven-eighths,

thirteenth-fifteenths, that is to say, we enunciate the numerator,

and then the denominator, and add the termination— th, to the

latter.

CHAPTER I.

9. Arithmetic has, for it special object, to establish fixed and

and certain rules for performing all possible operations upon

numbers. It embraces, besides, the study of a great number of

properties which have been discovered during the researches made

in order to arrive at these methods, or to facilitate the use of them.

We will now explain these operations in their order, recollecting

that, in order to render the methods independent of every sort of

question, it is best to consider the numbers as abstract numhers.

Nevertheless, in the applications designed to familiarize begin-

ners with the methods, we can propose questions also relating to

concrete or denominate numhers.

OPERATIONS ON ENTIRE NUMBERS.

ADDITION.

10. To add or sum up several numbers^ is to unite all these

•numhers into a sinylc one; or, to form a number which contains

in itself alone as many units as there are in the different numbers

taken separately.

The result of this operation is called the sum, or total. The
addition of numbers of a single figure offers no difficulty. It is



18 ADDITION.

done unit by unit. Children learn thus to make these additions

by means of their fingers, and fix the results in their memory.

In this way, for example, they find thirty to be the sum of

5, 7, 8, 4, and 6; or, that 42 is the sum of the numbers

7,9,6,5,8,7.

OPERATION.

Let now the numbers to he added be 7,453 7,453

and 1,534. 1,534

After having written the numbers, one under 8,987

another, with a line under them, we commence

with the simple units, and say, 3 and 4 make 7, which we place

under the units. Passing to the tens, 5 and 3 make 8, which we

write under the tens. Then, 4 and 5 make 9, which we write

under the hundreds. Lastly, 7 and 1 make 8, which we write

in the column of thousands.

The number, 8,987, found by this operation, is the sum of

the two given numbers, since it contains their units, their tens,

their hundreds, and their thousands, which we have summed up

successively.

OPERATION.

Again, let it be proposed to add the four num- 5,047

bers,^ 5,047, 859, 3,507, 846. We write them 859

one under the other, and, commencing with the 3,507

units, 7 and 9 make 16, and 7 make 23, and 6 846

make 29. We place the nine simple units under 10,259

the first column, and retain the two tens, in order

to add them to the figures of the next column, which are also

tens. Passing to the next column, we say that the two reserved,

and 4 make 6, and 5 make 11, and make 11, and 4 make 15.

We write the 5 in the column of tens, and retain the 1 hundred

which we carry to the column of hundreds. Operating upon

this column, as upon the preceding, we find 22 hundreds, or 2

hundreds, which we write under the hundreds, and 2 thousands,

which we retain in order to carry them to the column of thou-

sands. Lastly, 2 reserved, and 5 make 7, and 3 make 10. We
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place the under the thousands and advance the 1 to the left,

which gives 10,259 for the required sum.

General Rule.— In order to add several numbers together,

commence by writing them one under another, so that the units

of the same order may be in the same column. Add then

successively the figures which compose each one of the vertical

columns, commencing with the column of simple units, passing

to the columns which are on the left : write below the line

the sum of the figures of each column, provided the sum is

expressed by a single figure. But if it exceeds 9, in which

case it is expressed by several figures, of which the last to the

right represents the units of this column, and the others to the

left tens of the same order, write only the figure of units below

the column, and reserve the tens in order to add them to the figures

of the column immediately to the left. When you have operated

in this manner upon all the columns, you loill obtain the sum

required, because it results from the union of the units, tens,

hundreds, &c., which enter into the given numbers.

11. Remark.—If the sum of the figures in each column does

not exceed nine, we could commence the operation equally well

by the addition of the units of the highest order as by the addi-

tion of the simple units. But as it happens oftenest that several

of these sums exceed nine, if we commence on the left, we will

often be obliged to return upon our steps, in order to correct a

figure already written, and increase it by as many units as we

shall have obtained from the tens of the following column in

operating upon that column. For this reason it is best in all

cases to commence on the right rather than on the left.

SUBTKACTION.

12. To subtract one number from another is to seeh the excess

of the greater number over the less. The result of this operation

is called remainder, excess, or difference. So long as the numbers

proposed consist only of a single figure, the subtraction is easy
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Thus, the difference between 9 and 6 is 3. "VVe can easily sub-

tract a number of a single figure from a number which does not

exceed twenty. Thus, take 7 from 13, there remains 6, since by

what we have learned in addition, 7 and 6 make 13. In the

same manner, 9 from 17 there remains 8, because 8 and 9 make

17. These operations, which suppose only the exercise of the

memory upon the addition of numbers of a single figure, serve

as a basis for the subtraction of numbers of several figures.

Let it he required to subtract 5467 from 8789.
OPERATION.

After having placed the smaller number under the 8789

greater, and underlined the whole, we say, com- 5467

mencing with the simple units, 7 from 9 leave 2, which 3322

we place in the column of simple units; passing to the •

tens, 6 from 8 leave 2, which we write in the column of tens

;

the same operation finally upon the hundreds and thousands, 4

from 7 leave 3, and 5 from 8 leave 3, gives 3322 for the re-

quired remainder. For by the nature of the operations which

have just been performed, we see that the greater number con-

tains more than the second, 2 simple units, 2 tens, 3 hundreds,

3 thousands, and consequently exceeds the smaller by 3322.

Let us propose for a second example, to find the difference

which exists between the two numbers, 83456 and 28784.

OPERATION.

Having arranged the numbers as in the preceding 83456

example, we say, first, 4 from 6 leave 2, which we 28784

write under the units. But when we pass to the 54672

column of tens, we meet with a difficulty : the lower

figure, 8, is greater than the upper one, 5, and consequently

cannot be subtracted. In order to overcome this difficulty, we

borrow mentally from the hundreds figure 1 hundred, which

equals 10 tens, and add it to the 5 tens which we have already,

giving us 15 tens; we then say, 8 from 15 leave 7, which we

write in the column of tens. Passing to the column of hundreds,

we observe that the upper figure, 4, ought to be diminished by 1,



SUBTRACTION. 21

since we have borrowed this unit in the preceding subtraction

;

we say, then, 7 from 3, which is impossible ; but we borrow, as

before, 1 thousand, which equals ten hundreds, giving 13 hun-

dreds, and take 7 from 13, which gives 6, to be written in the

column of hundreds. Passing to the thousands, 8 cannot be

taken from 2 ; but 8 from 12 leave 4, to be written in the column

of thousands. Lastly, as the figure 8, of tens of thousands, on

account of the 1 just borrowed, ought to be replaced by 7, we

say, 2 from 7 leave 5. Thus, the remamdevj or the excess of

the greater number over the less, is 54672.

In order to understand how, by this means, we arrive at the

end proposed, it is sufficient to remark that, according to the

artifices employed tft effect the partial subtractions, we can ar-

range the two numbers in the following manner :

—

Tens of thousands, thousands, hundreds, tens, units.

1st number, 7 12 13 15 6

2d number, _2 8 7 8 4

5 4 6 7 2

From this we see that the upper number exceeds the lower

one by two units, 7 tens, 6 hundreds, 4 thousands, and 5 tens

of thousands— or exceeds it 54672 units.

Let it he proposed, for example, to subtract 158429 from
300405.

OPERATION.

99 9

As 9, the units figure of the lower number, is 300405

larger than 5, the corresponding figure of the greater, 158429

we have to borrow 1 ten from the first figure to the 141976

left ; but this figure being 0, it is necessary to have

recourse to the figure 4, of hundreds, from which we borrow 1,

which equals 10 tens; and since we have need of only a single

ten, we leave 9 of them above the 0; we then add 1 ten to 5,

which gives 15, and say, 9 from 15 leave 6, which we write

under the units. Passing to the tens, we say, 2 from 9 leave 7.

For the hundreds, as the upper figure, 4, has been diminished
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by the 1 whicli we borrowed, and as we cannot take 4 from 3,

we have recourse to the next figure to the left ; but that and the

figure which is to its left being zeros, we borrow 1 from the next

significant figure, 3. This 1 equals 10 of the order following, and

100 units of the order thousands ; and since we have need of

only 1 unit of this order, we leave 99 of them, which we place

above the two zeros; adding 1 thousand to the 3 hundreds, it

becomes 13 hundreds, and we say, 4 from 13 leave 9, which we

place under the column of hundreds.

In the two following subtractions, each one of the zeros being

replaced by a 9, we say, 8 from 9 leave 1, and 5 from 9 leave 4.

Passing to the first column to the left, we say, 1 from 2 (for the

figure 3 is diminished by 1) leaves 1. Thus we have for the

required remainder 141976.

If we reflect upon the manner in which the greater number

has been decomposed, we can arrange the operation thus :

—

hundreds of thous., tens of thous., thous., hundreds, tens, units.

1st number, 2 9 9 13 9 15

2d number, _1 5 8 4 2 9

1 4 19 7 6

Then the greater number exceeds the less by 6 units, 7 tens,

9 hundreds, 1 thousand, 4 tens of thousands, 1 hundred thou-

sand, or by 141976.

General Rule.—In order to perform the subtraction of two

numbers, place the less number under the greater, so that the

units of the same denomination fall in the same column ; then

underline the two numbers; sid)tract then successively, units from,

units, tens from lens, hundreds from hundreds, &c., and write the

partial remainder's one to the left of another; the number

formed by these remainders is the total remainder, or the result

required.

When a figure of the lower line is greater than the figure above

it, augment mentally this last figure by \(} units, and diminish

the figure to the left of it by one unit.
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Jf immediately to the left of an upper figure less than the one

below, corresponding, there are one or more zeros, increase this

figure above mentally always by 10 units ; but in the following

subtractions replace the Os by 9s, and diminish by a unit the

upper significant figure which is immediately to the left of these

zeros.

13. First Remark.— If each one of the figures of the lower

number is less than the corresponding figure of the greater, we

could commence the operation indifi'erently at the right or left.

But as it often happens that one of the figures of the less num-

ber exceeds the figure of the greater above it, the partial subtrac-

tion cannot be effected without borrowing from one of the figures

to the left of that one with which we are operating; for this

reason it is necessary to commence on the right, in order to bor-

row when there is need of it.

14. Second Remark.— It is clear that instead of diminishing

by one unit the figure from which we have borrowed it, we can

leave this figure unchanged, provided we augment the corres-

ponding figure below by one unit. This manner of operating is

in general more convenient in practice.

Thus, in the ^ast example, after having said for the simple

units, 7 from 11 leave 4, instead of saying for the tens, 8 from 9

leave 1, we say, 9 from 10 leave 1 ; in the same manner, instead

of saying for the hundreds, 7 from 13 leave 6, we say, 8 from 14

leave 6, and so on for the rest.

But when we employ this modification, we must be careful to

augment the lower figure only when we have been obliged to

borrow in the subtraction of the preceding figures. This modifi-

cation is used particularly in division.

VERIFICATION OF ADDITION AND SUBTRACTION.

15. We call the verification of an arithmetical operation,

another operation which we perform in order to convince our-

selves of the accuracy of the first.
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The verification of addition is effected by adding anew, but

commencing at the left hand. After having formed the sum of

the figures in the first column on the left^ we subtract it from,

that part which answers to it in the sum total ; we write down

the remainder, which we reduce mentally into units of the order

of the following figure, in order to join them to the units of this

order in the sum total. In the same manner we sum up the

second column on the left, and subtract this partial sum from the

corresponding part of the sum total ; ice continue this operation

to the last column ; the last subtraction leaves no remainder.

Thus, after having found that the four numbers,

6047

859

3507

846

have for their sum 10259

in order to verify the result 2120

we add the same numbers commencing on the left. We say, 5

and 3 make 8 thousands, which we subtract from 10 thousands,

leaving 2 thousands for remainder; which, with the figure 2

hundreds, make 22 hundreds ; then 8 and 5 make 13, and 8

make 21, which we take from 22, which gives for remainder 1

hundred, which, joined to 5 tens, forms 15 tens ; 4*and 5 make 9,

and 4 make 13 ; 13 from 15, there remains 2, which, joined

to the 9 units following, gives us 29; lastly, 7 and 9, and 7 and

6 make 29 ; 29 from 29 and nothing remains ; then the operation

is exact.

The verification of subtraction is effected by adding to the

smaller number the remainder found by the operation ; and it

is evident that we ought thus to reproduce the greater number,

since this remainder is nothing more than the excess of the

greater number over the less.
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Thus, in the annexed examples, after having

found that 54682 is the excess of the greater

number over the less, if we add this excess to

the number 28784, we ought to obtain the

number 83466— which we do in fact obtain.

25

83466

, 28784

Rem. 54682

Proo/83466

16. Here we give some examples of addition and subtraction,

with their verifications.

Additions.

83054 700548

256870 897597

748759 6588

90874 69764

130909 407300

8746 987846

1319212 1207047

2:^^^0

Subtractions.

4276690

4073050062 20004001003

2803767086
'

8405128605

1269282976 11598872398

4073050062 20004001003

Problem.—A banker had in his chest a sum o/* $65,750; he

gave one person $13,259 ; to a second, $18,704 ; to a third,

$22,050 ; to a fourth, $9850 j what was the state of his chest after

these payments ?

Solution.— After having summed up the four sums succes-

sively paid, we subtract the sum total from that which he had,

3
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and the result of the subtraction will be what ought to remain in

his chest. Thus,

13259 65750

18704 63863

22050 $1887 what he has left.

9850

63863

We remark, that in effecting the preceding addition and sub-

traction, we have considered the given numbers as abstract, al-

thouoh they were denominate numbers according to the enuncia-

tion of the question ; but, arrived at the result, 1887, we have

given it the name of the species of unit which the numbers

expressed in the enunciation. We must always perform the

operations in this manner, when we wish to apply the results

of the operations to questions in denominate numbers. The

results being altogether independent of the nature of the nuin-

bers, we consider them in a point of view purely abstract, except

in giving to the final result the name of the unit which the

enunciation of the question indicates.

MULTIPLICATIOlf.

17. To multiply one number hy another, is to compomid a

third number with the first, as the second is compounded with

unity. Then, if the two given numbers are entire numbers,

to multiply them is, to take the first as many times as there arc

units in the second.

We call the result of multiplication, product; the number to

be multiplied, multiplicand ; and the number by which we mul-

tiply, multiplier ; which denotes how many times we are to take

the first. The two numbers bear jointly the name of factors of

the product. Properly speaking, multiplication is nothing else

than addition ; for, in order to obtain the result, it would suffice

to write the multiplicand as many times as there are units in the
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multiplier, and then add all these numbers together. But this man-

ner of operating would be very long, if the multiplier was composed

of several figures ; we are then to seek a method of simplifying

it, and it is in this abbreviation that multiplication consists.

18. As long as the two factors are expressed, each one by a

single figure, their product is obtained by the successive addition

of the multiplicand to itself; thus, in order to multiply 7 by 5,

we say, 7 and 7 make 14, and 7 make 21, and 7 make 28, and 7

make 35 ; this last number being the result of the addition of

five numbers equal to 7, expresses the product of 7 by 5.

Beginners will do well to exercise themselves in this sort of

multiplication ; for they ought to impress the results upon the

memory, if they wish subsequently to obtain easily the product

of numbers expressed by several figures. Nevertheless, for those

who are suflBciently exercised, all that is necessary is to give a

table called the multiplication tabUj or tahle of Pythagoras, from

the name of its inventor, or at least from him who first brought

it into public use.

1
1
2 •^

1
4 5

1
« 7

1
«

1

9

2
,

1
4 6

1

8 10 |12 14 116 |18

3
1

6 9 |12 15 |18 21 |24 |27

4
1

8 12 |16 20 |24 28 |82 36

5 |10 15 |20 25 |30 35 140 |45

6 |12 18 |24 30 |36 42 |48 |54

7 |14 21 |28 35 42 49
1
56

1
63

8 |16 24 132 40 48 50 |64 |72

9 |18 27 36 45 54 63 |72 81

The first horizontal row of this table is formed by adding 1 to

itself up to 9 ; the second, by adding 2 to itself; the third, by

adding 3 ; and so on for the rest. We remark, moreover, that

the same arrangement is made in the vertical columns. Each
vertical column, taken in order, is composed of the same num-

bers as each horizontal row. Thus, the sixth horizontal row is
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composed of 6, 12, 18... 54, and the sixth vertical column is

composed of the same numbers, 6, 12, 18... 54.

That being established, when we wish to obtain the product

of two numbers from this table, we seek the multiplicand in the

first horizontal row, and go down from this number vertically,

until we arrive at that one which is opposite to the multiplier,

which we find in the first vertical column. This number, con-

tained in the little square, is the product. For example, in order

to find the product of 8 by 5, we descend from 8, taken in the

first horizontal row opposite to 5 in the first vertical column, and

the number 40 in the little square is the required product.

19. Suppose, now, that the multiplicand consists of several

figures, and the multiplier of a single figure.

OPIRATION.

8459 Let it be proposed to multiply 8459 by 7. We
8459 could (17) obtain the result by writing one under an-

8459 other seven numbers equal to 8459, and adding suc-

8459 cessively the simple units, the tens, hundreds, &c.,

8459 together. We would thus find 59213 for a result. But

8459 it is evident that this is nothing more than taking

8459 7 times the 9 units of the multiplicand, 7 times the 5

59213 tens, &c., and then to take the sum of all the pro-

ducts.

8459 Thus, after having placed the multiplier, 7, under

7 the multiplicand, we say, 7 times 9 make 63, (see

59213 table of multiplication), or 6 tens and 3 units; we

place the 3 under the units, and reserve the 6 tens in

order to add them to the product of the tens of the multiplicand

by 7. We thus say, 7 times 5 make 35, and 6 make 41 tens, or

4 hundreds and 1 ten ; we place 1 in the column of tens, and

reserve the 4 hundreds ; 7 times 4 make 28, and 4 make 32

hundreds, or 3 thousands and 2 hundreds; we place 2 in the

column of hundreds, and retain the 3 ; lastly, 7 times 8 make

56, and 3 make 59 ; we write down the 9, and carry the 5 one

place to the left, because there are no more figures in the multi-
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plicand to be multiplied. We find thus, 59213 for the required

product.

Whence we see that, in order to multiply one number of

several Jigures hy another of a single figure, we must multiply

successively the units, tens, hundreds, dsc, of the midtiplicand hy

the multiplier, and write these different palatial products in the

columns to which they belong, taking care at each partial multi-

plication, to reserve the tens in order to add them to the tens, the

hundreds in order to add them to the hundreds, &c.

OPERATION.

Let it be proposed as a second example to multiply 37008

37008 by 9. We say, first, 9 times 8 make 72 ; we 9

write 2 in the column of units, and reserve the 7. 333072

Then 9 times give ; but we have reserved 7 from

the preceding operation, so we write these 7 tens in the column

of tens ; 9 times make ; we write in the rank of hundreds,

since there are none, and since it is necessary to preserve the

place of hundreds ; then 9 times 7 make 63 ; we set down 3 and

reserve 6 ; lastly, 9 times 3 make 27, and 6 make 33 ; we set

down 3, and advance 3 one place to the left. Thus, the required

product is 333072.

20. Before passing to the case in which the multiplier is com-

posed of two or more figures, we will explain the method of

rendering a number 10, 100, 1000 times greater, or of multiply-

ing it by 10, 100, 1000.

It results from the fundamental principle of numeration (5),

that if we place a to the right of a number already written,

each one of the significant figures of the number being thus

advanced one step towards the left, expresses units ten times

greater than before. In the same manner, by placing two O's to

the right, we render it 100 times as great, because each signifi-

cant figure expresses units 100 times as great.

Then, in order to multiply any entire number whatever by 10,

100, 1000, &c., it sufires to annex 1, 2, S,...zeros.

3 *
"
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Thus, the products of 439 by 10, 100, 1000, 10,000, &c., are

4390, 48,900, 439,000.

21. Let us consider now the case in which the multiplicand

and multiplier are composed of several figures.
OPERATION.

We propose to multiply 87468

By :..... 5847

We commeDce by placing the multiplier under 612276

the multiplicand, so that the units of the same 3498720

order fall in the same column. This being ar- 69974400

ranged, we observe that, to multiply 87468 by 437340000

5847, is to take the multiplicand, 7 times, 40 511425396

times, 800 times, and 5000 times; then to add

together these partial products. We can first find, by the rule

of (19) the product of 87468 by 7, which gives 612276. But

how obtain that of 87468 by 40 ? Let us conceive, for an instant,

that we have written, one under another, 40 numbers equal to

87468, and that we make the addition of these numbers ; we

will thus have the required product. But it is evident that these

40 numbers form ten divisions, each division containing 4 times

87468. We form this product by rule (19), and find it to be

349872. Multiplying this product by 10, which (20) is efi'ected

by annexing a 0, we obtain 3498720 for the product of 87468

by 40.

We see, then, that this second operation reduces itself to mul-

tiplying the multiplicand by the figure 4, considered as express-

ing simple units, in writing a to the right of the product, and

in placing the result as we see above, below the first partial pro-

duct. In like manner, in order to perform the multiplication of

87468 by 800, it suffices to multiply 87468 by 8, which gives

699744; then annex two O's to the right of this product; we

thus have a third partial product, 69974400, which we place

below the two preceding products. For 800 numbers, equal to

87468, and, placed one under another, form evidently 100 divi-

sions of 8 numbers, each equal to 87468, or 100 numbers, equal

to the product of 87468 by 8 ; that is to say, 6997400 We
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could prove by a similar course of reasoning, that, in order to

multiply by 5000, it suffices to multiply by 5, to annex three

zeros to the product, and write the result, 437340000, thus ob-

tained, below the three first products. Performing now the addi-

tion of these four partial products, we find at last the total pro-

duct, 511425396.

N. B.— In practice, we dispense ordinarily with adding the

zeros to the right of the partial products, found by multiplying

by the figures in the tens, hundreds, places; but we write

each partial product below the preceding product, advancing it

one place to the right with reference to this product ', that is to

say, we make its last figure occupy the same column which the

figure by which we multiply, occupies.

General Rule.— In order to multiply a number of several

figures by a number of several figures

—

Multiply first the multi-

plicand hy the units figure of the inultiph'er, after the rule of

(19) ) multiply in the same manner the whole multiplicand, suc-

cessively by the tens figure, by that of hundreds, &c., considered

as simple units, and write the partial products one under the

other, so that each one is advanced one column to the left, with

reference to the preceding ; then add these products; the respJt

will be the total required produx^t.

22. Often some of the figures of the multiplier are zeros, and

then it is necessary to make some modifications in the arrange-

ment of the partial products.
OPERATION.

Multiply 870497

By 500407

We multiply, first, th« whole multiplicand by 6093479

7, which gives for a product 6093479. Now, 3481988

as there are no tens in the multiplier, we pass 43524S5

to the multiplication by 4, the hundreds figure, 435002792279

which gives the product, 3481988 ; and, since it

is necessary to make it express hundreds, we place it under the

first product, advancing it two columns to the left. In like man-
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ner, as there are no thousands, nor tens of thousands in tlie mul-

tiplier, we pass to the multiplication by 5, the figure in the place

of hundreds of thousands, and write the product, 4352485, under

the preceding, advancing it three places to the left, with reference

to that one.

In general, when there are one or more zer&& between two

significant figures of the multiplier, we advance the product

corresponding to the significant figure, which is to the left of these

zeros, one more column to the left than there are zer'os between the

figures.

In fine, in order to avoid all error on this subject, we must

take care at each operation that the last figure of each partial

product falls in the column of units of the.same order as that of

the figure by which we multiply.

23. If one of the two factors of the multiplication, or both,

are terminated by zeros, we abridge the operation by multiplying

them as if the zeros were not there ; but we place them at the

end of the product.

EXAMPLE.
OPEBATIOir.

Multiply 47000

By .'

2900

After having multiplied 47 by 29, according to 423

the known method, we annex 5 zeros to the right 94

of the product, and thus obtain 136300000 for 136300000

the required product. For, if we had at first to

multiply 47000 only by 29, it would be necessary to make the

product express thousands (i. e.) units of the same species as the

multiplicand; thus we ought to add 3 zeros. But to multiply a

number by 2900, is (21) to take 100 times the product by 29

;

then we must add two new zeros. The same reasoning applies to

all similar cases.

24. But little reflection on the method of multiplication will

convince us of the necessity of commencing the operation on the
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right, at hast in thepartial muhipllcafion hy each one ofthefigures

of the multiplier^ because of the reservations of figures which

we frequently make in multiplying each figure of the multipli-

cand by each figure of the multiplier.

But nothing prevents us from inverting the order of the partial

multiplications by the different figures of the multiplier, as we

can see in the following example.

"We have here commenced the multiplication with operation.

the hundreds figure of the multiplier 3 but in the 5704

following operation we have taken care to advance 487

the product one column to the right. In the same 22816

manner the third product is advanced one place to 45632

the right with reference to the preceding. Usage 39928

alone requires us to form the products from right to 2777848

left; it is also the more natural and convenient method.

25. We will close the subject of multiplication by the ex-

planation of several properties, of which we will often have to

make use. •

1st. Let it he required to multiply, '^^b hy 12, equal to 8 mul-

tiplied hy 9. We say, that to multiply 345 by 72, is to multiply

345 by 9, and the result by 8.

In order to establish this proposition without performing i\\Q

operations, we must employ a mode of reasoning analogous to

that employed in (21). To multiply 345 by 72, is to sum up 72

numbers equal to 345. But these 72 numbers, written one under

another, form evidently 8 divisions of 9 numbers, equal to 345

;

then, after having multiplied 345 by 9, we must take this product

8 times. Thus, to multiply 345 by the product 72 of the two

factors, 9 and 8, is to multiply 345 by 9, and the new result by 8.

As 9 is itself equal to the product of 3 and 3, we can say, that

to multiply 345 by 72, is to multiply 345 by 3, the result obtained

by 3, and finally the new result by 8. As we can apply this rea-

soning to other numbers, this general proposition results from it

:

to multiply a numher hy a product of tico or more numhers

already formed, amounts to the same tltivg as multiplying the

numher hy each one of the factors successively.
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26.— 2d. In a multiplication of two factors, we can talce in-

differently the first number for multiplicand, the second for mul-

tiplier, or reciprocally In other terms— the product of two

numbers is the same in whatever order we perform the operation.

Thus, the product of 459 by 237, is equal to the product of

237 by 459.

For, let us conceive unity written 1, 1, 1, T, 1,

459 times in a horizontal line, and let 1, 1, 1, 1, 1,

us form 237 of these lines ; it is clear 1, 1, 1, 1, 1,

that the sum of the units contained in 1, 1, 1, 1, 1,

such a figure is equal to as many times

the 459 units of a horizontal row as

there are units in a vertical column, or

in 237, (i. e.) that this sum is equal to the product of 459 by 237.

But we can say also, that this sum is equal to as many times the

237 units of the vertical column as there are units in a horizontal

row, or in 459 ; that is to say, is equal to the product of 237 by

459. Then, &c. If the nature of a question con'ducts to the

multiplication of 76 by 5672, according to the proposition which

we have just demonstrated, we would prefer to take the product

of 5672 by 76, because in that case we would only have two

partial products to form, while in the other operation we would

have to form four of them. This proposition will be demonstrated

for any number whatever of factors.

DIVISION.

27. To divide one num.ber by another, is to find a third num-

ber, which, multiplied by the second, will reproduce the first ; or,

in other terms, being given the product and one of the factors, to

determine the other factor. As in the multiplication of entire

numbers, the product is composed of as many times the multipli-

cand as there are units in the multiplier, we can also say, that,

to divide one entire number by another, is to seek how many

times the first number, considered as a product, contains the se-
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cond, considered as multiplicand ; the number of times is then

the multiplier. Finally, we can also say, that, to divide a numher

hi/ another, is to divide the first number into as many equal parts

as there are units in the second.

These last two points of view, under which we sometimes con-

sider division, pertain only to entire numbers, while the two first

pertain to all possible numbers, whether entire or fractional.

Nevertheless, the names given to the terms of division have been

drawn from these last two points of view.

Thus, the first number is called dividend, the second is called

divisor, and the third quotient, from the Latin word quoties

;

because it expresses how many times the dividend contains the

divisor.

It results, obviously, from the first two definitions, that when

we have obtained the quotient, in order to make the verification

of the operation, it will suffice to multiply the divisor by tha

quotient ; and, if the operation has been exact, we will thus re-

produce the dividend.*

Reciprocally in multiplication, the product may be considered

as the dividend, the multiplicand as the divisor, and the multi-

plier as the quotient ; thus, we make the verification of multipli-

cation by dividing the product by one of the factors ', and if the

operation is exact, we ought to reproduce the other factor. These

ideas being established, we pass to the explanation of the method

of division.

28. In the same manner as multiplication can be effected by

the addition of a number several times to itself, we can also find

the quotient of a division by a series of subtractions.

For, let it be required to divide 60 by 12. As many times as

we can subtract 12 from 60, so many times is 12 contained in

60. Thus, the quotient is equal to the number of subtractions

which we can make before the dividend is exhausted.
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60 In this example, as we are obliged to make 5

1^ subtractions, it follows that the quotient is 5. But
1st rem. 48 this manner of performing the division would be

12 too long in practice, especially if the dividend was
2d rem. 36 very great in comparison with the divisor. It is

12 in the art of abridging the operation that the or-

3c? rem. 24 dinary method of division consists:

12 29. From the fact that we know by heart the pro-

4it7i 7'em. 12 ducts of two numbers of a single figure, we can

12 determine easily the quotient of the division of a

bth rem. number of one or two figures by a number of a

single figure.

For example, 35 divided by 7, gives for a quotient 5. This

we know, because we know that 7 times 5 give 35. We say,

also, in this example, that the 7th of 35 is 5, because 7 times 5

make 35. Suppose, again, that we have to divide 68 by 9. As
7 times 9, or 63, and 8 times 9, or 72, comprise 68 between

them, it follows that 68, divided by 9, gives for the quotient, 7,

with a remainder, 5 ; or the 9th of 68 is 7, .with a remainder, 5.

In like manner, 47 contains 8, 5 times, with a remainder 7

;

because 5 times 8 gives 40, and 6 times 8 gives 48.

We will see farther on what is to be done with the remainder,

when the divisor is not contained exactly in the dividend.

30. Let us consider the case in which the dividend is com-

posed of any number of figures, the divisor containing but a

single figure.

Divide 6766453 by 8.

6766453)8

64 845806

36
32

46

Proof by multiplication.

845806
40 8

64 6766448
64 6

053 6766458
48

5
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After having written the divisor to the right of the dividend,

and separated them by a vertical line, we draw below the divisor

a horizontal line. This arranged, We see at once that, if we place

(mentally) to the right of the divisor, 8, five zeros, (i. e. ) multi-

ply it by 10,000, then six zeros, or multiply it by 100,000, the

two products, 80,000 and 800,000, are the one smaller, the other

greater than the dividend. Whence we conclude that the quo-

tient demanded is comprised between 10,000 and 100,000 ; that

is to say, is composed of six figures, and that thus the highest

units of the quotient are hundreds of thousands, of which we

must find the figure.

Now, as the product of the divisor by the figure sought cannot

give units of a lower order than hundreds of thousands, it fol-

lows, that this product is contained wholly in the 67 hundreds

of thousands of the dividend; and if we divide 67 by 8, which

gives the quotient 8 for 64, and the remainder 3, we can affirm

that the figure of hundreds of thousands in the quotient is 8.

In fact, 800,000 times 8 gives 6,400,000, a number which can

be subtracted from the dividend, 6766453 ; while 900,000 times

8, or 7,200,000 cannot be so subtracted. The figure 8 being thus

determined, we place it under the divisor; then we subtract the

product 8 by 8, or 64 from 67, and conceive the remaining

figures of the dividend to be written to the right of the remain-

der 3, which gives 366453 for the total remainder of this first

operation. (This first operation is evidently nothing more than

subtracting from the dividend 800,000 times the divisor, or is

equivalent to 800,000 successive subtractions of the divisor 8.)

It would seem necessary to write on the right of the quotient

already obtained, five zeros, in order to give it its true value

;

but we avoid this by the arrangement which we will make of the

following figures of the quotient.

We must now determine the figure of tens of thousands of the

quotient. Since the product of the divisor by this figure cannot

give units of an order inferior to tens of thousands, it is con-

tained wholly in the 36 tens of thousands of the remaining divi-

dend. It suffices then to bring down to the side of the remain-

4
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der, 3, the following figure, 6, of the dividend ; then to divide 36

bj 8, which gives the quotient, 4, for 32, and the remainder, 4.

We write this quotient, which expresses necessarily the tens of

thousands of the whole quotient, on the right of the first quo-

tient, 8 ; then, after having subtracted 4 times 8, or 32 from 36,

we bring down to the right of the 4, the next figure of the divi-

dend, which gives 64. (This new operation, which amounts to

subtracting 40,000 times 8, or 320,000 from 366,453, is equiva-

lent to 40,000 new successive subtractions of the divisor, 8.)

In order to obtain the ones of thousands of the whole quo-

tient, we divide 46 by 8 ; the quotient is 5 for 40, and the re-

mainder, 6. We write this new quotient, 5, to the right of the

first two ; then, after having subtracted 5 times 8, or 40, from 46,

we bring down to the right of the remainder, 6, the next figure,

4, of the dividend, which gives 64. (This third operation is

equivalent to 5000 successive subtractions of the divisor, 8.)

In order to obtain the figure of hundreds of the total quotient,

we divide 64 by 8, which gives 8, and 0, for remainder; we write

the new quotient to the right of the three first ; then, after having

subtracted 8 times 8, or 64 from 64, we bring down to the right

of the remainder, 0, the next figure of the dividend, which gives

05, or simply 5.

Here a particular case presents itself; as the new partial divi-

dend, 05 or 5, which is to give the tens of the quotient, is less

than the divisor, 8, we must conclude that the total quotient has

no tens, (and in fact the remaining dividend is 53, a number less

than 10 times 8, or 80.)

We place, then, a in the quotient to the right of the four

figures already obtained, in order to replace the tens which are

wanting, and preserve the relative value of the preceding and

following figures ; we then bring down to the right of the re-

mainder, 5, the next and last figure of the dividend, and con-

tinue the operation. The quotient of 53 divided by 8, being 6

for 48, we write this figure to the right of the first five quotients

already found; we then subtract 48 from 53, which gives at last

5 for the remainder of the entire operation ; and the required
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quotient is 845806, which we can easily verify by multiplying 8

by 845806, or rather 848806 by 8, and adding the remainder, 5,

to the product thus obtained. (All the operations which have

been performed in eifecting this division are equivalent, evidently,

to 800,000, then 40,000 subtractions, then 5000, then 800, then

6, or 845806 successive subtractions, in which the divisor, 8, is

constantly the number to be subtracted.)

31. We will not establish for the case of division which we

have just discussed, a general rule founded on the preceding

reasoning, because there exists (for this case only) a practical

method, more convenient and more simple in reference to the

arrangement of the calculations. Let us take again the above

example

:

6766453 to be divided by 8.

Quotient, 845806; remainder, 5.

We know already (No. 27) that to divide a number by 8, or to

seek how many times 8 is contained in this number, amounts to

dividing the number into 8 equal parts, or taking the eighth of

it. This being fixed, taking the two first figures to the left of

the dividend, 67, we say, the eighth of 67 is 8, with the re-

mainder, 3. We write the quotient, 8, under the figure^ 7, of

the dividend; then we place, mentally, the remainder, 3, ex-

pressing 3 hundreds of thousands, or 30 tens of thousands, to

the left of the figure, 6, of the dividend, which expresses also

tens of thousands ; we say, as before, the eighth of 36 is 4, with

remainder 4. We write the second quotient, 4, to the right of

the first; placing again, mentally, the remainder, 4, expressing

4 tens of thousands, or 40 thousands, to the left of the thousands

figure, 6, of the dividend ; we say, again, the eighth of 46 is 5,

with the remainder, 6 ; we write the third quotient, 5, to the

right of the preceding; continuing in the same manner, we say,

again, the eighth of 64 is 8, with the remainder, 0, and we write

the fourth quotient, 8, to the right of the third. The eighth of

05, or 5, is 0, with the remainder, 5 ; we write this fifth quotient

to the right of the fourth. Finally, the eighth of 53 is 6, with
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the remainder, 5 ; we write to the right of the fifth quotient the

sixth and last partial quotient, which thus falls beneath the units

figure of the dividend^ and we have for the result the quotient,

845806, with the remainder, 5.

Second example

:

8230200409 to be divided by 6.

Quotient, 1371700068; remainder, 1.

Here, the first figure on the left of the dividend being greater

than the divisor, we see that the quotient ought to have units of

the same order as those of the figure 8 ; and we say, the sixth of

8 is 1, which we write under the figure 8, with the remainder,

2 ; then the sixth of 22 is 3, which we place to the right of the

figure 1, with the remainder, 4.

The 6th of 43 is 7, with the remainder, 1.

The 6th of 10 is 1, with the remainder, 1.

The 6th of 42 is 7, with the remainder, 0.

The 6th of is 0, with the remainder, 0.

The 6th of is 0, with the remainder, 0.

The 6th of 4 is 0, with the remainder, 4.

The 6th of 40 is 6, with the remainder, 4.

Finally, the 6th of 49 is 8, with the remainder, 1.

The required quotient is then 1371700068, with the remain-

der, 1.

It is very important to understand thoroughly this method,

because it finds its application in the case of division, which is

yet to be discussed.

We will observe, moreover, that when we know by heart the

multiplication table as far as the number 12, we can obtain very

easily, by the same method, the 10th, 11th, and 12th, of any

number whatever.

EXAMPLES.

1st. 897614708497, to be divided by 12.

Quotient, 74801225708, remainder, 1.

(The 12th of 89 is 7, with remainder, 5 ; the 12th of 57 is 4,

with remainder, 9; the 12th of 96 is 8, remainder, 0; &c., &c.)
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.2d. 23054273896, to be divided by 11.

Quotient, 2095843081 ; remainder, 5.

(The 11th of 23 is 2, with remainder, 1 ; the 11th of 10 is 0,

with remainder, 10; the 11th of 105 is 9, with remainder,

6; &c., &c.)

As to the division by 10, instead of applying the method, it is

simpler to separate in thought the last figure to the right of the

dividend. The part to the left expresses the quotient, and this

last figure separated (which can be 0), is the remainder of the

division. This is an evident consequence of the system of nu-

meration.

Thus, the 10th of 2710548 is 271054, and the remainder, 8

;

the 10th of 863005704 is 86300507, and remainder, 4; the 10th

of 3805670 is exactly 380567 ; results which can be found also

by the application of the method above.

32. Let us pass to the case in which the given numbers being

both composed of several figures, the quotient is to have one only.

This case deserves, of itself, particular attention ; and it will

serve us, besides, as a basis for the development of the general

case.

Let it be given to divide 730465 by 87467.

87467730465

699736

"^729

We remark, first, that the product of the divisor by 10, or

874670, is greater than the dividend ; thus, the quotient sought

is less than 10, and can have only one figure.

In the second place, the product of 8 tens of thousands of the

divisor by the figure sought, as it cannot give units of an order

inferior to tens of thousands, must be found wholly in the 73

tens of thousands of the dividend ) whence it follows, that the

figure sought cannot exceed the quotient of the division of 73

by 8. We are then conducted to the division of the part, 73,

on the left of the dividend, by the first figure, 8, of the divisor,

4*
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wHcli gives the quotient, 9. But 9 is evidently too large; for,

in the multiplication of the whole divisor by this figure, we find,

in multiplying the thousands figure, 7, of the divisor, by 9, 63

units of this order, and, consequently, 6 tens of thousands, to be

added to the 72 tens of thousands, product of the first figure, 8,

of the divisor, by the same figure, 9 ; which would give 78 tens

of thousands, a number greater than the dividend

It is not necessary, then, to try any figure higher than 8, as

figure of the quotient required. Effecting the multiplication of

87467, by 8 (which we have placed under the divisor), we ob-

tain a product of 699736, less than the dividend ; which proves

that the quotient, 8, is correct. On subtracting this product

from the dividend, as the operation shows, we find for remainder,

80729.

Again, divide 974065 by 189768.

974065
1

189768

948840 I 5

25225

As the dividend and the divisor are composed of the same

number of figures, it is clear that the quotient ought to have

only one figure; and in order to find it, we divide, first, the first

figure on the left of the dividend, 9, by the first figure, 1, on

the left of the divisor. The quotient is 9 ; but this figure, and

the next lower, 8, 7, 6, are too large, if we consider the two first

figures, 18, on the left of the divisor; for the products of 18,

by 9, 8, 7, 6, being 162, 144, 126, and 108, all surpass the 97

tens of thousands of the dividend. This leads us to try the

figure 5.

On multiplying the divisor by 5, we have the product, 948840,

which, subtracted from the dividend, gives for remainder, 25225,

a number smaller than the divisor ; which proves that the quo-

tient, 5, is not too small.

33. In the two preceding examples, we have been able to de-

termine pretty easily what was the true figure of the quotient

;

but as this is not always the case, it is important to have a me-
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thod of ascertaining, without effecting tlie product of tlie divisor

by the quotient, whether the trial figure is the true one. We
will now develop this method.

Particular method of trial.

Given, 556428, to be divided by 69784.

556428
I

69784

488488 I 7

• 67940

The division of 55 (the two first figures on the left of the

dividend), by 6 (the first figure on the left of the divisor), gives

9 for quotient, with the remainder, 1.

In order that 9 may not be larger than the quotient sought, 9

times the divisor must be less, or, at most, equal to the dividend;

or, which is the same thing, the 9th of the dividend must be

greater, or at least equal to the divisor.

We then commence to take the 9th of 556428, after the me-

thod of (31). We find for the two first figures on the left, 61

tens of thousands, a number less than 69 tens of thousands of

the divisor, which shows that the 9th of the dividend is less than

the divisor; 9 ought then to be rejected. We next try 8. We
find for the three first figures of the 8th of the dividend, 695

hundreds less than the 697 hundreds of the divisor; then 8 is

too large. We now try 7. The first figure of the 7th of the

dividend is 7, greater than 6, the first figure of the divisor.

Whence it follows, that the 7th of the dividend is greater than

the divisor ; or, in other terms, that the product of the divisor

by 7, is less than the dividend. Thus, the figure 7 is the true

one. Multiplying the divisor by 7, and writing the product,

488488, below the dividend, then effecting the subtraction, we

obtain the remainder, 67940, a number smaller than the divisor.

Another Example.

Given, to divide 1148367 by 169987.

1148367

1019922

"128445

169987

6
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The division of 11 by 1, would give 11 for a quotient; but

the required quotient cannot be greater than 9, siq.ee the <iivisor,

multiplied by 10, would be a larger number than the dividend.

Let us try 9 ; the 9th of the dividend is 12 .... smaller than

the divisor, 16 We therefore reject the 9.

The 8th of the dividend is 14 ... . less than 16 ... . We
therefore reject 8.

The 7th of the dividend is 164 ... . less than 169 .... of

the divisor. We then reject 7.

The 6th of the dividend is 19 ... . greater than the divisor,

16; thus, the figure 6 is the true one. Multiplying the divisor

by 6, and subtracting the product, 1019922, from the dividend,

we obtain the remainder, 128445, smaller than the divisor.

The course to be pursued in this method of trial is evident

from the exposition of the last example. We stop as soon as we

obtain a figure greater or less than the corresponding figure of

the divisor. If it is greater, we can affirm that the trial figure

is the true one ; if less, we know that the trial figure must be

diminished.

We add, that all these trials can be made mentally, without

writing anything.

It could happen (but rarely), that we reproduced thus suc-

cessively all the figures of the divisor, in arriving at a remainder

necessarily less than the trial figure, and possibly 0. We would

then have not only the required quotient, but also the remainder

of the proposed division, which would be nothing else than this

final remainder.

We recommend especially the exercise of this method of trial,

as a means of avoiding all difficulty in any case whatever.

34. /Second Remark.— We have seen in all which precedes,

that after having determined a figure of the quotient, we proceed

to multiply the divisor by this figure, to write the product below

the dividend, and to effect the subtraction, placing the remainder

under this product. But we can employ a method of abbrevia-

tion which we will now explain.
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Let us take the first example discussed in (32.)

730465

307:^9

87467

8

This method of abbreviation consists in forming the product

of the divisor by the figure 8 of the quotient, mentally, and in

writing only the remainder below the dividend. To accomplish

this, we must subtract, successively, from the units, tens, hun-

dreds, &c., of the diyidend, the products of the units of the

same order of the divisor by the quotient, as fast as we form them

mentally. Thus, in the example above, we have at first to sub- •

tract from the 5 units of the dividend the product, 56, of the

quotient, 8, by the 7 units of the divisor; but as this subtraction

is impossible (which will generally be the case), we add mentally

6 tens to the 5 units, with the express reservation of adding, by

way of compensation, these 6 tens also to the product of the

quotient, 8, by the tens of the divisor (to be subtracted in its

turn) ; we form thus the number 65, from which we subtract 56,

which gives for a remainder, 9, which we write below the units

of the dividend. Passing to the tens figure of the divisor, 6,

we say, 8 times 6 give 48 tens, which, augmented by 6 tens

(reserved in the last operation), make 54 tens to be subtracted

from the 6 tens of the dividend. In order to perform the sub-

traction, we add 5 hundreds (tens of tens), to these 6 tens,

making 56 tens, from which we subtract the 54 tens, and write

the remainder, 2, under the tens of the dividend. Continuing

thus, we say, 8 times 4 hundreds make 32, and 5 (which were

added in the preceding operation), make 37. This cannot be

subtracted from 4 ; but 37 from 44 leave 7, which we write under

the hundreds of the dividend.

In the same manner, 8 times 7 make 56, and 4 (added in the

preceding), make 60 ; 60 from 60 leave 0, which we write under

the thousands of the dividend. Finally, 8 times 8 make 64, and

6 make 70 ; 70 from 73, leave 3. The total remainder is then

30729.

Let us take, again, the second example. We abridge the dis-
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cussion, making use of tlie expressions commonly used in prac-

tice (though often incorrect).

974065 1 189768

25225 1 5

Having found 5 the true figure of the quotient, we say, 5 times

8 make 40 ; 40 from 45, leave 5, and carry 4 (understood, in

order to add them to the following product) ; 5 times 6 make 30,

and 4 make 34 ; 34 from 36, 2 remain, and carry 3 ; 5 times 7

make 35, and 3 make 38 ; 38 from 40, remain 2, and carry 4

;

5 times 9 are 45, and 4 make 49 ; 49 from 54 leave 5, and carry

5. Finally, 5 times 18 make 90, and 5 make 95 ; 95 from 97

leave 2. The total remainder is, 25225.

N. B. It is very important, at each partial operation, to say,

carry such a figure, in order not to forget the number which, by

compensation, is to be added to the following product.

35. We have thus very fully discussed the simple cases of divi-

sion, because, having once mastered these thoroughly, also the me-

thods belonging thereto, of abbreviation and trial, the pupil will

find no difficulty in comprehending the general case which we will

now discuss, namely, lohere the dividend, the divisor, and the

quotient, contain any number of figures.

GENERAL CASE OP DIVISION.

Given, to divide 9176298 by 2678.

9176298 2678 Verification by multiplication,

11422 3426 2678
' 7109 3426

17538 16068

1470 5356

10712

8034

1470

9176298
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We arrange here the parts of tlie division ; the quotient, the

successive remainders, according to the indications which pre-

cede; then we reason as in (No. 30).

If we place mentally three zeros, and afterwards four zeros to

the right of the divisor, we obtain two products, 2678000, and

26780000, the one less, the other greater than the dividend.

Thus, the total quotient is comprised between 1000 and 10,000,

or must be composed of four figures, of which the first to the left

expresses thousands. In order to find this first figure, we observe

that its product by the divisor, inasmuch as it is thousands, is to

be found wholly in the part, 9176 thousands of the dividend.

We are then led to divide 9176 (which we consider as a first

partial dividend), by 2678 ; and the greatest number of times

that the second number is contained in the first, represents the

thousands figure of the total quotient. Now, the true quotient

of 9176, by 2678, obtained according to the method of trial in-

dicated in (33), is 3. We write, then, 3 below the divisor; we

next subtract from the dividend, the product of the divisor, by 3,

either by placing this product below the partial dividend, and

subtracting, or (No. 34), effecting simultaneously the subtraction

and the multiplication, as the table above indicates. (This first

operation amounts, evidently, to subtracting 3000 times the

divisor from the dividend.)

The remainder of this first subtraction being 1142, if we write

after it the figures of the dividend, which have not yet been used,

there would result a new dividend, upon which we could operate

as upon the primitive dividend ; but, as we have now to deter-

mine the hundreds figure of the quotient, and as the product of

the divisor by this figure cannot give units of a lower order than

hundreds, it must be contained wholly in the 11422 hundreds

of the remaining dividend ; so we bring down to the right of the

remainder, 1142, only the following figure, 2, of the dividend

;

which gives a second partial dividend, 11422, upon which we

operate as on the first.

The true quotient of the division of 11422, by 2678, is 4,

which we write below the divisor, and to the right of the first
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quotient obtained. We then subtract from the second partial

dividend; the product of ^he divisor, by the new quotient. The

remainder of this subtraction is 710. We bring d6wn to its right

the following figure of the dividend, 9, which gives a third divi-

dend, 7109, which is to furnish the tens figure of the total quo-

tient.

Dividing 7109 by 2678, we have for a true quotient, 2, which

we write to the right of the two first figures of the quotient

;

multiplying the divisor by 2, and subtracting the product from

the third partial dividend, we obtain 1753 for a remainder, to

the right of which we bring down the last figure, 8, of the divi-

dend, which gives 17538 for a fourth partial dividend. Finally,

the true quotient of 17538 by 2678, is 6. We multiply the

divisor by 6, and subtract the product from the fourth partial

dividend, which gives a remainder, 1470. The required quotient

is then 3426, with the remainder, 1470 ; which we can verify by

multiplying 2678 by 3426, and adding 1470 to the product, as

the table of operations shows. (The four operations which we

have just performed in this division, conduct to the same result

as if we had subtracted successively from the dividend, 3000

times, then 400 times, then 20 times, then 6 times the proposed

divisor.)

Second Example.

Given, to divide 42206581591, by 569874.

42206581591 i 569874

2315401 74063

3590559

1713151

3529

Placing mentally four zeros, then, five zeros, to the right of the

divisor, we obtain two products, 5698740000, and 56987400000,

which contain the dividend between them; which proves that

the quotient sought is itself comprised between 10,000 and

100,000, or is composed of 5 figures, of which the first to the

left expresses the tens of thousands. The two first figures on the

left of this quotient, 74, which we have placed below the divisor,
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are found without difficulty, as in the first example. But, having

arrived at the remainder, 35,905, if, in order to form the third

partial dividend, which is to furnish the hundreds figure of the

total quotient, we bring down to the right of this remainder the

next figure, 5, of the dividend, we obtain 359055, a number less

than the divisor, which proves that the quotient has no hundreds.

We must then place a to the right of the two first quotients,

then bring down the next figure, 9, to the right of 359055 ; we
thus have a fourth partial dividend, 3590559, which we divide

by 569874, in order to obtain the tens of the quotient. Con-

tinuing the operation, we find, finally, the total quotient, 74063,

with the remainder, 3529.

GrENERAL RuLE.

36. In order to divide any two entire numbers whatever, one

hy another^ write the divisor to the right of the dividend ; sepa-

rate them hy a vertical, then draw a horizontal line helow the

divisor. This done, take on the left of the dividend the number

of figures necessary and sufficient to contain the divisor ; you

obtain thus a first partial dividend, composed either of as many

figures, or one more, than there are in the divisor. See how

many times this partial dividend contains the divisor, and larite

the resulting quotient under the divisor ; multiply the divisor by

this figure, and subtract the product from the first partial divi-

dend.

Bring down to the right of the remainder, the next figure of
the dividend, which gives a second partial dividend. See in the

same manner how many times this second partial dividend con-

tains the divisor, and write this new quotient to the right of the

first. Multiply the divisor by this second quotient, and subtract

the product from the second partial dividend.

Bring doivn to the right of this second remaiiider, the next

figure of the dividend, which gives a third partial dividend^

upon which you operate as upon the preceding.

Continue this series of operations, untilyou have brought down

the last figure of the dividend, taking care at each operation to

5
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write the quotient which you obtain to the right of the preceding,

(in order to give to the former their jyroper value^.

If it happens after having brought doivn a figure, that you

obtain a partial dividend less than the divisor, place a in the

quotient, and then bring down a new figure to form a new 'partial

dividend. When, after all these operations, we arrive at a re-

mainder, 0, the dividend is said to be exactly divisible by the

divisor ; if the remainder is not 0, we add it in the verification

to the product of the divisor by the quotient.

37. From the nature of the method, we deduce the following

consequences

:

1st. No partial division can give a quotient greater than 9, nor

ought to lead to a remainder less than the divisor.

2d. The first figure on the left of the quotient expresses units

of the same order as those expressed by the first figure on the

right of the first partial dividend ; and consequently the quotient

contains one more figure than the rest of the dividend, after the

first partial dividend has been separated. In other terms, the

number of figures of the quotient is either the difference between

the number of figures in the dividend and the number of figures

in the divisor, or this difference augmented by unity.

Particular Cases of Division.

EemarJc.— When one of the terms of a division to be per-

formed, or both of them, are terminated by zeros, we can simplify

the general method.

We will examine, specially, the case in which the divisor alonS

is terminated by zeros, as the same rule of simplification can be

applied to all other cases, a single one excepted.

1st. Given, 47543296 to be divided by 690000.

General method. Particular method.

47543296 I 690000 4754 1 3296 1 69

6143296 1 68 614

1

1 68

623296 Rem. 62 True rem. 623296
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The rule to be followed is,—suppress the zeros which terminate

the divisor, and separate on the right of the dividend as many

figures as there are zeros on the riojht of the divisor. There re-

mains then to be divided, 4754 by 69 ;
perform this division

after the ordinary method. The quotient obtained, 68, is the

true quotient of the division of the given numbers. Write after

the corresponding remainder, 62, the figures 3296 of the divi-

dend which have been separated to the right, and you have

623296 for the total reinainder of the division.

This manner of operating rests on the following :—We observe,

first, that the 69 tens of thousands of the primitive divisor are

contained in the 4754 tens of thousands of the dividend, the

same number of times that 69 simple units are contained in 4754

simple units. Thus, the quotient of 4754 by 69 ought to be

identical with the quotient of the division of the two given

numbers.

In the second place, the remainder of the division of 4754 by

69, being less than the divisor, 69, it follows that this remainder,

followed by the figures to the right of the dividend, 3296, is less

also than the divisor followed by four zeros, or 690000 ; then,

623296 expresses the true remainder of the division of the two

numbers, 47543296 and 690000, (as 620000 would be the re-

mainder, if the dividend were 47540000. So 623296 must be

the true remainder in the case above).

2d. The case in which the dividend alone is terminated by

zeros, does not give place for any simplification. Nevertheless,

if the part to the left of these zeros is to contain the divisor

exactly, we could first cut off the zeros ; then, after having ob-

tained the quotient of the division of the part on the left by the

divisor, we would write to the right of this quotient the zeros

which terminate the dividend.

EXAMPLE.

Given, 375000 to be divided by 125. The division of 375 by

125, giving 3 for exact quotient, the quotient demanded is 3,
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followed by three zeros of the dividend, or 3000. But this sim-

plification is of no importance.

3d. The same number of zeros may be on the right of both

dividend and divisor. In this case, we suppress the zeros in the

two terms of the division ', then, after having divided the two

parts on the left, one by the other, we write after the remainder

thus obtained, the zeros on the right of the dividend.

Given, to divide 5679800 by 8600.

56798|00 I 86100

519" 1660"

Rem. 38 True rem, 3800

This mode of operating is a repetition of the first case, with

the sole diff*erence that the remainder of the division of 56798

by 86, or 38, is to be followed by the zeros which terminate the

primitive dividend, instead of being followed by significant

figures.

4th. Fewer zeros on the right of the dividend than on the

right of the divisor.

Given, to divide 68235947000 by 547600000.

68235914700015476

13475 1124

25239

Eem. 3335 True rem. 333547000

This case is compounded of the first and third.

5th. More zeros on the right of the dividend than on the right

of the divisor.

Given, to divide 25036900000 by 875000.

25036900 [000 I 875

7536 1 28613~
5369
"

1190

3150

Eem. 525
'

True rem. 525000

This case is, properly speaking, nothing more than a particular

case of the first case.
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General Remarh.— As in the three first operations of arith-

metic, the calculations are performed by commencing on the right,

it is natural to ask why, in division, we commence on the con-

trary on the left.

In order to answer this question, we must observe that the

dividend, being the sum of the partial products of the divisor,

by the units, tens, hundreds, &c., of the quotient, all these par-

tial products are mingled one with another ; so that it is impos-

sible to commence by separating out the products by the units,

by the tens, &c. ; while, by the established method we determine

at once in what part of the dividend the product by the highest

units is found, and then we obtain the figure of these highest

units ; then we arrive at the figure of the units of the order im-

mediately below the first, and thus with the rest.

Two Examples for Exercise.

1st. 12187610837 to be divided by 15619.

Quotient, 780306; remainder, 11423.

2d. 2487623393304 to be divided by 5076078.

Quotient, 490068 ; remainder, 0.

Verification of Multiplication and of Division.

It has been established in (No. 27), that we are naturally led

by the definition, even of division, to make the proof of Mul-

tiplication by Division, and that of Division by Multiplication ;

and we have given in the course of the exposition of the method,

the means of performing this operation. But we will show later

more expeditious methods of making these verifications.

88. We will now give some uses of multiplication and divi-

sion.

Question 1st.— Required the price of 2564 yards of a piece

of masonry, of which each yard costs 47 dollars.

Since each yard costs 47 dollars, it is clear that by repeating

this value 2564 times, we will have the price of the 2564 yards.

Thus, it suffices to form the product of 47 by 2564, or rather
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the product of 2564 by 47 ; and this product will express the

number of dollars required.

We give the operation and its proof by division.

2564

47

17948

10256 188

120508 47

265

300

2564

120508 000

The 2564 yards cost $120,508.

Question 2d.— One yard of a piece of masonry cost $39.

Required how many yards can be built for $8395.

It is evident that as many times as 39 will be contained in

8395, so many yards can be constructed for the price. Thus, it

suffices to divide 8395 by 39 ; and the quotient will be the re-

quired number of yards.

8395
I

39 Proof, 215

59 12151^ _39
205 1935

10 645

10

8395

As we obtain 215 for quotient, and 10 for remainder, it is ne-

cessary to know the use which we are to make of this remainder.

Let us observe, that if the dividend contained $10 less, it

would be the product of 39 by 215. Thus, the number of yards

demanded would be 215 ; but, as we have 10 dollars more, we

have to determine the part or fraction of a yard which can be

constructed for these 10 dollars.

Now, with one dollar, we would evidently have g'^th of a yard,

since we could build the whole yard for $39; then, with $10,

we must have 10 times -g^^, or (No. 8), \^. Thus, 215 yards,

and -J£ths of a yard, is the result required.

Such is, in general, the use which we have to make of the re-

mainder of a division, when in performing the operation we are

resolving a question relating to concrete numbers.
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We conceive the unit of the quotient (the nature of whicli is

always determined by the enunciation of the question), to he

divided into as many equal parts as there are units in the divi-

sor', we take one of these parts as tnany times as there are units

in the remainder ; we then add the resulting fraction to the en-

tire quotient already obtained.

Question 3d.—Suppose that 498 persons have to divide equally

a sum of $1,348,708. • Required the part of each one.

13487081498 2708

3527 1
2708i§| 498

4108 21664

124 24372

10832

124

1348708

The quotient of this division being 2708, and the retiiainder

124, we conclude that if the sum to be divided was diminished

by 124 dollars, each person would have for his portion 2708

dollars. But, as the given sum contains $124 more than the

product of 2708 by 498, it follows that each person ought to

have $2708, and a part of $124. In order to form an idea of

this part, we can at first consider the number 124 as a whole,

which it is necessary to divide into 498 equal parts ; and one of

these parts is the fraction which is to complete the quotient : but

it is simpler to conceive the unit (No. 8), 1 dollar, to be divided

into 498 equal parts, and to take 124 of these parts, which gives

1 2 4
4"5H for the fraction to be added to the entire quotient.

39. N. B.— This last example leads us to a remark of which

we will often make use ; it is, that to divide a number, 124, into

498 equal parts, is to take 124 times the 498th part of unity.

For, if instead of 124, we had simply to divide 1 into 498 equal

parts, each part would be (No. 8), ^^^ ) but, as the number to

be divided is 124 times greater, the result of the division ought

to be 124 times greater, or equal to 124 times ^^j, or equal to
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|||. In general, to divide a numher into as many equal parts

as there are units in another, is the same thing as to divide unity

into as many equal parts as there are units in the second number,

and to take one of these parts as many times as there are units

in the first.

40. From the two propositions demonstrated in Nos. 25 and

26, we deduce some consequences which it is well to make known,

as they are of continual use in arithmetic.

We observe, first of all, that according to the definitions, even

of the multiplication and division of entire numbers, we render

an entire number as many times greater or smaller as there are

units in another, in multiplying or dividing the first number by

the second.

Thus, when we multiply 24 by 6, the product which we obtain

is 6 times as great as 24, since it results from the addition of 6

numbers equal to 24. In the same manner, if we divide 24 by

6, the quotient is 6 times as small as 24, since this quotient, re-

peated 6 times, reproduces 24.

This established, we say, first, that if in a multiplication we
render the multiplicand or multiplier a certain number of times

greater or smaller, the product is, by this change, rendered the

same number of times greater or smaller.

Given, for example, to multiply 47 by 6, and suppose that, in-

stead of performing this operation, we multiply 47 by 24, which

is 4 times as great as 6 ; since, according to what has been said

in (25), to multiply 47 by 24, is the same as to multiply 47 by 6,

and the product by 4, it follows at once that the product of 47

by 24, equals 4 times the product of 47 by 6; (t*. e.) is 4

times as great.

Reciprocally, the product of 47 by 6 (the fourth of 24), being

4 times smaller than the product of 47 by 24, it follows, that if

we render the multiplier 4 times as small, or if we divide it by 4,

the product is rendered 4 times as small by this change.

We have seen, moreover (26), that in a multiplication of two

factors., we can invert the order of the factors; then, what wo
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have just said with reference to the multiplier, applies equally to

the multiplicand ; then,

It results from this, that we do not change a product, in ren-

dering the multiplicand a certain number of times greater, pro-

vided we render at the same time the multiplier a certain number

of times less, (^. e.) by multiplying one factor by a certain num-

ber, and dividing the other factor by the same number.

It is upon this last consequence that we found a method which

is sometimes employed to verify multiplication.

Given, to multiply 347 by 72. To multiply 347 by 72, is to

multiply twice 347, or 694, by the half of 72, or by 36. Thus,

after having multiplied 347 by 72, we can then multiply 694 by

36; and, if the operations are correct, we ought to find the

same result.

Now, since in division the dividend is a product, of which the

divisor and the quotient are two factors, it follows that if we

multiply or divide the dividend by a certain entire number, the

quotient is by this change multiplied or divided by the same en-

tire number.

For, as, after this change, the quotient, multiplied by the divi-

sor, must produce a dividend a certain number of times greater

or less than the first dividend, it follows necessarily,, the divisor

remaining the same, that the quotient must be the same number

of times greater or less.

On the contrary, if, without altering the dividend, we render

the divisor a certain number of times greater or smaller, the

quotient is thereby rendered the same number of times smaller

or greater. This is the sole admissible hypothesis, in order that

the multiplication may give the same product or the same divi-

dend.

Then, by multiplying o^j^ dividing the dividend and the divisor

by the same number, we do not change the quotient ; since, if,

by the change of the dividend, we multiply or divide the quotient

by a certain number, the second change renders it the same

number of times smaller or greater. Thus, the compensation

leaves it the same.
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Exercises on tliis Chapter.

1. Enunciate the number 10030047089500476.

2. Enunciate the same number, the middle figure being left

out.

3. How many figures in a number, the first figure on the left

of which expresses hundreds of septillions ?

4. What is wanting in the number 2047035007, in order to

form unity, followed by as many zeros as there are figures in the

number ?

5. Being given to subtract 58900564 from 62080347, if we

substitute for the smaller number that which would make it

unity followed by 8 zeros, and if we add this complement to the

greater number, what must we then do to obtain a result equal

to that which we obtain by the direct operation ?

6. The day being composed of 24 hours, the hour of 60 mi-

nutes, the minute of 60 seconds ; required how many seconds

there are in the year, which we suppose to have exactly 365

days.

7. Required what changes would be made in the product of

67084 by 3769, by supposing, 1st, That the multiplier is aug-

mented by 10, the multiplicand remaining the same ? 2d, That

the multiplicand is augmented by 10, the multiplier remaining

the same? 3d, That the two factors are simultaneously aug-

mented by 10 units ?

8. What is the population of a county containing 16537

square miles, each square mile averaging 45 inhabitants ?

9. The light of the sun reaches the earth in 8 minutes and 13

seconds, and the distance is 95000000 miles. How far does the

light travel in one second ?
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CHAPTER II.

FRACTIONS.

41. We have already seen (Nos. 1 and 8), what a fraction is,

and what idea we are to form of it. We distinguish always two

terms in a fraction, the denominator and the numerator. The

denominator indicates into how many equal parts unity is divided,

and the numerator how many of these parts are taken. These

two, taken together, constitute the fraction.

Thus, in the fraction |, which we call three-fourths, 4 is the

denominator, and shows that the unit is divided into 4 equal

parts ', 3 is the numerator, and indicates that we take 3 of these

parts. In the same manner, the fraction ii, eleven-twelfths,

expresses that the unit is divided into 12 equal parts, and that

we take eleven of them. We have seen, also, that such a fraction

as i| is equivalent to the 15th part of the whole number ex-

pressed by 13 ', that is to say, a fraction can also be considered

as the quotient of its numerator divided by its denominator, so

that thirteen times the 15th part of unity, or thirteen-fifteenths,

and the j&fteenth part of thirteen, or thirteen divided by fifteen,

are identical expressions.

This last point of view leads us naturally to consider fractional

expressions, such as \^, f|, |J, .... of which the numerator is

greater than the denominator.

Now, these expressions are easily comprehended, as they result

from the division of the numbers 19, 23, 47, respectively into 6,

12, 15, equal parts.

But how can y express 19 times the 6th part of unity ?

For this we conceive that we have four principal units, of

which each one is divided into 6 sixths ; then, in order to form

19, or 6x3 + 1 of them, we take the 18 sixths, of which the
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three first principal units are composed, and add to them one of

the parts of the fourth principal unit.

We obtain thus 19 sixths, or ^^.

By extending this principle, we can place unity or any entire

number under a fractional form.

Thus, 1 can be written j|, |f, &c.

In the same -manner, 10, 14, 25, &c., can be written
^-f, y,

2/, &c.

42. From the definition which we have just given of the

numerator and denominator of a fraction, the following conse-

quences obviously result.

1st. If we multipli/ or divide the numerator of a fraction hy a

numherj the denominator remaining the sam.e, the new fraction

will he this number of times greater or less than the first.

For, when we multiply the numerator by 2, 3, 4, ... . we in-

dicate thereby, that we take 2, 3, 4, ... . more parts; and as

the parts are the same, the new fraction is 2, 3, 4, ... . times

greater. Thus, let the fraction be -/^ ; it is clear that ^|, ^-|,

||-, .... are fractions 2, 3, 4, ... . times greater than the first.

Again, in dividing the numerator by 2, 3, 4 .... we take 2, 3, 4 ...

.

times fewer parts than, &c Thus, ^^g, -^-g, are 2, 3, times

smaller than -^^.

2d. If we multijpli/ or divide the denominator of a fraction

hy a numher, the numerator remaining unchanged, we divide or

multiply the fraction hy this numher

For, when we multiply the denominator by 2, 3, 4 . ... we indi-

cate that the unit is divided into parts 2, 3, 4 ... . times more

parts. Each of these parts is then 2, 3, 4 times smaller; and as

we take always the same number of these parts, it follows that

the fraction is 2, 3, 4 ... . times smaller.

If we. divide the denominator by 2, 3, 4 ... . the unit is

divided into 2, 3, 4 ... . times fewer parts ; each one of theso

parts is then 2, 3, 4 ... . times greater; therefore, &c.

3d. We do not change the value of a fraction hy multiplying

or dividing its two terms hy the same numher.
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For the change made in the numerator renders the fraction a

certain number of times greater or smaller ; but the same change

made in the denominator renders it on the contrary the same

number of times smaller or greater; then one change compen-

sates the other, and the value of the fraction is not change'd.

Thus, the fractions |, -f^, ||, H, .... are all equivalent to the

fraction |, since they result from the multiplication of each of

the tei-ms of the latter by 2, 3, 4, 5. In the same way, the fraction

-|| is equal to the fraction j|, or j%, or |, since we obtain these

last by dividing the two terms of || by 2, 3, 4.

These different propositions can also be considered as conse-

quences of the second manner of viewing a fraction (see No. 41),

and the principles established (No. 40), in division.

43. As the third proposition is of continual application, we

will give a demonstration of it, direct and independent of the

two first.

Take, for example, the fraction |, and multiply the two terms

5 and 8 by 3, which gives ||. "We have to prove that this last

fraction is equivalent to the first.

For, the principal unit being divided at first into eight equal

parts, let us divide each eighth into three equal parts ; the unit

is thus divided into twenty-four equal parts.

Each eighth equals, then, three twenty-fourths, and five-eighths

equal five times three, or fifteen twenty-fourths ; that is to say,

the fractions | and ^| have absolutely the same value.

We would demonstrate, in the same manner, that the fractions

i^ and |g, the latter of which is formed by multiplying the two

terms, 11 and 12, of the first, by 5, are equal.

As reciprocally we pass from the fraction i| to the fraction |,

by taking the third of each term, and from the fraction |J, to

the fraction |^, by taking the fifth of the two terms of the for-

mer, we can conclude that a fraction does not change its value

when we multiply or divide its two terms hy the same number.

Let us pass to the different operations which we may have to

perform on fractions in the resolution of a question, the data of

which are fractions or fractional numbers.

G
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But, before explaining tlie four fundamental operations, we

will make known two transformations of frequept use in the

calculus of fractions.

Reduction op Fractions to the same Denominator.

44. This transformation has for its object to reduce two or more

fractions
J
having different denominator's, to the same denomina-

tor. Now, the principle that we do not change the value of a

fraction by multiplying its two terms by the same number, fur-

nishes a simple means of effecting this transformation.

Let, for example, | and | be the fractions which are to be re-

duced to the same denominator.

If we multiply the two terms, 3 and 4, by 7, the denominator

of the second, and the two terms, 5 and 7, of the second, by 4,

the denominator of the first, there will result |^ and |g for the

two fractions required.

These fractions have the same value as the fractions proposed

according to the principle of (43). Again, they have necessarily

equal denominators, since each one of them comes from the mul-

tiplication of the two primitive denominators, 4 and 7, by each

other.

Again, given the fractions, ^j %, tt, to be reduced to the same

denominator.

Multiply the two terms, 4 and 7, of the first fraction, by 88,

product of the denominators, 8 and 11, of the second and third;

then the two terms, 5 and 8, of the second, by 77, product of

the denominators, 7 and 11, of the first and third; finally, the

two terms, 6 and 11, of the third, by 56, product of the deno-

minators of the first and second. We will thus obtain the new

fractions, |f|, |f |, |f |.

These fractions have the same value as the primitive fractions,

and their denominators are necessarily the same, since each one

of them is the product of the denominator of each fraction by

the product of the two other denominators.
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General Rule.— In order to reduce any numher whatever

of fractions to the same denominator, multiply successively the

two terms of each one of them hy tM product of the denominators

of the other fractions.

We will show the method of applying this rule in practice.

Let the fractions be |, y\, f§, ||, and ||.

For greater simplicity we arrange the operation thus

:

3 7 JO 23 29
8 11 13 3? 5 4 3

153725 111800 94600 49192 28600

461175 782600 9 4 6 0_ 1131416 829400
r22^B0U? 122^500? 123^500^ T32]5B00> TS-JUgOU*

After having formed the product of the five denominators, 8,

11, 13, 25, and 43, which gives for the common denominator of

the transformed fractions, 1229800, we divide successively this

product by each one of the denominators, and we obtain the five

quotients, 153725, 111800, 94600, 49192, 28600, which we

place respectively below the five proposed fractions ; after which,

we multiply the numerator of each fraction by the quotient which

corresponds to it ; and we obtain thus the difi"erent numerators.

As to the common denominator, it is, as we have said above,

equal to 1229800.

The reason of this manner of proceeding is easily perceived,

for the number, 1229800, being the product of the five denomi-

nators, the quotient, 153725, of the division of 1229800 by 8,

expresses necessarily the product of the four other denominators,

11, 13, 25, 43.

In the same manner, 111800, being the quotient of the divi-

sion of 1229800, by the second denominator, 11, is equal to the

product of the four other denominators, 8, 13, 25, and 43 ; and

the same reasoning applies to the other quotients. This method

is, moreover, much more expeditious, than if, for each fraction,

we performed the multiplication of the denominators of the four

others. But it is only really advantageous when there are more

than three fractions to be reduced to the same denominator.
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45. There is a case in which the reduction to the same deno-

minator can be performed in a very simple manner^; that is, when

the greatest of the denominators is exactly divisible by each one

of the others.

Let the fractions be, for example,

2 3 5 7 23
3 4 g 1'2 3 5

12 9 6 3 1

24 27 30 21 23
3BJ "3 6? 3 6? 3gJ 3B'

It is easy to see that 36, divisible by itself, is also divisible by

each one of the four other denominators, 3, 4, 6, and 12.

This being fixed, we effect successively these divisions, and

place the quotients, 12, 9, 6, 31, below the four first fractions;

after which, we multiply the numerator of each one of them by

the quotient which corresponds to it; the fraction, ||, remains

as it was, and all the fractions are reduced to the denominator^ 36.

Sometimes, although the greatest denominator is not divisible

by all the others, we perceive that, by multiplying it by 2, 3, 4

we obtain a product exactly divisible by all the denominators.

This afibrds us, likewise, a means of simplification.

Let the fractions be,

2
4 i H 1 3

IB
1 7
24 II

18 9 G 4 3 2

H fl ^1
52
72- H H

The denominator, 36, is divisible separately by 4, 12, and 18,

but is not divisible by 8 nor by 24 ; but, if we double it, we ob-

tain 72, a number exactly divisible by each one of the denomi-

nators.

This being fixed, we form the quotients of 72 by each one of

the denominators, and place them respectively below the frac-

tions ; we then multiply the numerator of each one of them by

the quotient which corresponds to it; all these fractions will

have 72 for common denominator.
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Formation of the Least Common Denominator of

Several Fractions.

46. The simplifications which we have just explained, require

some practice to see when they can be applied ; but there is a

direct means of obtaining, in all cases, the Least Common De-

nominator of several fractions.

To do this, we must find the least common multiple of the de-

nominators; that is, the least number divisible by all of them.

To do this, decompose the numbers into their smallest possible

factors ; that is, prime factors, or factors divisible only by them-

selves and unity. Then form the product of all these prime

factors, common or not common, to the numbers. We obtain

thus a result, evidently divisible by all the numbers ; and it is,

besides, the smallest number so divisible ; for, any number con-

taining one of the prime factors a smaller number of times

than one of the given numbers, would not be divisible by that

one of these numbers which contained thfs factor a greater num-

ber of times. (A more thorough discussion of this we will give

under the chapter on the properties of numbers).

Applying the above to the last example, we have,

4 8 12 18 24 36

2.2 2.2.2 2.2.3 2.3.3 2.2.2.3 2.2.3.3

Having thus arranged the numbers and their prime factors,

we see that 2.2.2.3.3 is evidently the least common multiple.

Performing the multiplication, we obtain 72, as before.

Let the fractions be for a new example,

11
if

1 7 2 5 37 83 29 233
4501? 24 2F 44 T45 IIH

the numerators of which do not contain, at least apparently, prime

factors (as 2.3.5 ....), which may be, at the same time, con-

tained in the corresponding denominators; otherwise, it would

be necessary to suppress these factors in the two terms.

6*
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Kecomposing the denominators, we find for results,

3.5 1 2.3.3 1 2.2.2.3
1
2.2.7 1 2.2.11 1 2.2.5.7 1 7.5.5 1 2^2.2.2.2.5.3;

which gives for the least common multiple,

2.2.2.2.2.3.3.5.5.7.11, or 554400;

which is the least common denominator to be given to all the

fractions; a number far less than that which we would obtain by

applying the general rule in No. (44).

Nothing more remains now but to determine the numbers by

which we are to multiply the numerators, in order to obtain the

numerators of the new fractions ; and for this it is necessary, as

we have already seen, to divide 554400 by each one of the given

denominators.

Kelations of Magnitude among Several Fractions.

We have here some applications of the preceding transforma-

tions.

47. Question 1st.— Of the two fractions^ | and ^^^ which is

the greater ?

"VVe cannot, at first sight, answer this question ; because, though

on the one hand the unit in the second fraction is divided into a

greater number of parts than in the first, on the other hand, we

take more of these parts, since the numerator, 7, is greater

than 3.

But we remove the difiiculty by reducing them to the same

denominator; for it is evident that of two fractions which have

the same denominator, the greater is that which has the greater

numerator. This reduction effected, we obtain |g for the first

fraction, and |J for the second; the fraction, |, is the greater

of the two.

We find, in the same manner, that of the three fractions, ^,

A' T^3'
^^ greatest is

f.^,
the smallest -{\) for, being reduced to

the same denominator, they become, respectively, f^fj, tVijVj
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We could equally well reduce the fractions to the same nume-

rator (by applying to the numerators what has been said concern-

ing the denominators) ; and of these fractions the greatest would

be that which would have the smallest denominator; since, the

parts being greater, we take the same number of them. But the

first method has the advantage of making known, at the same

time, the differences which exist between the fractions, compared

two and two.

48. Question 2d.— What change do we produce in a fraction^

hy adding the same number to its two terms ?

Let the fraction be -^^^ for example, to both terms of which

we add 6 ; jf is the resulting fraction.

If now we reduce these two fractions to the same denominator,

the first becomes ^||, and the seeond ^f |. The proposed frac-

tion is then increased in value. In order to give a reason for this

fact, we observe that, unity being equal to i|, the excess of unity

above ^^^ is expressed by f^ ; in the same manner, the excess of

unity above || is expressed by f^. The numerators of these

two differences are the same, which should be the case; for, 18

and 13, having been formed by the addition of 6 to the two

terms, 7 and 12, it follows, that there is the same difference be-

tween 18 and 13, as between 7 and 12. But the difference,
-f^,

is necessarily less than the difference, y^^, since the first denomi-

nator is the greater, and the numerators are equal; then the

fraction, ||, differs less from unity* than the fraction, -^^^ conse-

quently, the first is greater than the second.

We see, moreover, that the greater the number added to the

two terms of the fraction, y^^, the smaller the difference between

unity and the new fraction ; since the numerator of this differ-

ence, being always 5, the denominator becomes greater and

greater. As this same reasoning can be applied to every other

fraction, we can draw the conclusion that if to the two terms of

a fraction we add thjB same number, the resulting fraction is

greater than the given fraction ; and it is greater, the greater the

number added.
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Conversely, by the same reasoning, a fraction is diminished in

value when we subtract the same number from its two terms.

N. B. The contrary would take place, if the fractional number

was greater than unity, as i|.

Adding 8 to the two terms, we would have |j less than ||.

For, II exceeds unity by ^^ only, while i| surpasses unity by

f^, greater than ^^.

We have thought it necessary to enter into some details upon

this proposition, in order to prevent beginners from confounding

this with (43), when we multiply or divide the two terms of a

fraction by the same number.

Keduction op a Fraction to its Simplest Terms.

49. It happens often, in the calculus of fractions, that we are

led to a fraction expressed by large numbers ; now, the greater

the numerator and denominator, the greater trouble we have to

form a just idea of the fraction.

For example, the fraction, ||, indicates, that we must divide

unity into 15 equal parts, and take 12 of these parts. But 12

and 15 being, at the same time, divisible by 3, if we perform the

divisions, there results |, a fraction equivalent to the one given

;

then, in order to form an idea of it, it suffices to conceive the

unit divided into 5 equal partg, and to take 4 of them, which is

much simpler. When then we have a fraction, the terms of

which are quite large, it is best to reduce it, if possible, to a

fraction whose terms are smaller.

The first method which presents itself is to divide the two

terms by the numbers, 2, 3, 4 .... as long as that is possible.

1st. Let the fraction, |J|, he given. The two terms of this

fraction are evidently divisible by 4 ; and, in effecting the divi-

sion, we obtain |^ ; but the two terms of this are divisible by 9

;

and this new division gives for a result, |, which cannot be far-

ther reduced.
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This example presents no difficulty ; but this is not always the

case, especially when the two terms of the given fraction are

composed of three or more figures; for it can happen that a

prime factor of two or three figures is common to the two terms

of the fraction, without our being able to find it by mere inspec-

tion. Hence, we see the necessity of having a general method

of reducing a given fraction to the most simple expression possi-

ble. This method we will now discuss. It is called the method

of the greatest common divisor.

50. Wo commence by establishing several preliminary no-

tions.

A number is called the multiple of another number, when it

contains it a certain number of times, as we have already seen.

Reciprocally, the second number is called a suhmultiple, or an

aliquot part, or simply a divisor of the first.

We call a prime number a number which is only divisible by
itself, and by unity, which is a divisor of every number. Thus,

2, e3, 5, 7, 11, 13 ... . are prime numbers; but 4, 6, 8, 9, 12,

are not prime numbers; since they have the divisors, 2 and 3.

Two numbers are said to be prime with respect to each other,

when they have no other common divisor except unity ; thus,

4 and 9, 7, 1, and 12, are numbers prime with respect to each

other; 8 and 12 are not, since they are divisible at the same

time either by 2 or 4.

First Principle.— Every number, which exactly divides an-

other number, divides also any multiple whatever of this second

number.

For example, 24 being divisible by 8, and giving for a quo-

tient 3, 5 times 24, or 120, divided by 8, will give (No. 40) for

quotient, 5 times 3, or 15. In the same manner, 60 being divi-

sible by 12, and giving for quotient 5, 7 times 60, or 420, divided

by 12, will give for quotient 7 times 5, or 35.

Second Principle. — Every number, decomposed into two

parts, both divisible by a second number, is itself divisible by
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this second number. For the quotient of the division of the total

being equal to the sum of the two partial quotients, if these two

partial quotients are entire, their sum, or the total quotient, must

be entire.

Third Principle.— Every number which divides exactly a

whole, decomposed into two parts, and which divides one of these

parts, ought to divide also the other part. For the total quotient

being equal to the sum of the two partial quotients, if one of

these partial quotients is fractional, it would follow that an entire

number would be equal to a fractional number ; which would be

absurd.

51. So much being established, let the two numbers., 360 and

276, be given, of which we propose to determine the greatest com-

mon divisor, or the greatest number which will divide them both

exactly. It is at once evident that this greatest common divisor

cannot exceed the smaller number, 276; and as 276 divides

itself, it follows, that if it will divide 360 also, it will be the

greatest common divisor sought. Attempting this division of

360 by 276, we find for quotient, 1, and remainder, 84 ; then,

276 is not the greatest common divisor. We say, now, that the

greatest common divisor of 360 and 276, is the same as that

which exists between the smaller number, 276, and the remain-

der of the division.

For the greatest common divisor sought, since it ought to

divide 360, and one of its parts, 276, divides necessarily the

other part, 84, (50) ; whence, we can conclude at once, that the

greatest common divisor of 360 and 276, cannot exceed that

which exists between 276 and 84 ; since it must divide these two

numbers. In the second place, the Gr. C. D. of 276 and 84,

dividing the two parts, 276 and 84, of 360, divides necessarily

this number; being the exact divisor of 360 and 276, it cannot

exceed the greatest C. D. of 360 and 276. Whence, we see,

that the G-. C. D. of 360 and 276, and the G. C. D. of 276 and

84, cannot be greater than each other; then they are equal.
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Thus, tLe question is reduced to seeking the greatest C. D. of

276 and 84 ; numbers simpler than 360 and 276.

"We now reason on 276 and 84, as we have about the primitive

numbers; that is, we try the division of 276 by 84; because,

if the division is exact, 84 will be the G. C. D. of 276 and 84,

and consequently of 360 and 276.

EiFecting this new division, we have 3 for quotient, and 24 for

remainder; then 84 is not the Gr. C. D. sought. But, by analogous

reasoning to that above, we can prove that the Gr. C. D. of 276

and 84. is the same as that of the first remainder, 84, and the

second remainder, 24. The question is then reduced to finding

the G. C. D. of 84 and 24; we divide 84 by 24, and obtain 3

for quotient, and 12 for remainder; then 24 is not the G. C. D.
;

but, as this G. C. D. is the same as that of 24 and 12, we divide

24 by 12 ; we find an exact quotient, 2 ; thus, 12 is the greatest

C. D. of 12 and 24, hence of 84 and 24, of 276 and 84, and,

finally, of 360 and 276, or the G. C. D. sought.

In practice, we arrange the operation thus

:

13 3 2

360

84

276

24

84

12

24 12

After having divided 360 by 276, we place the quotient, 1,

above the divisor, and a remainder, 84 ; we write this remainder

to the right of the less number, 276, and we divide 276 by 84,

placing the quotient, 3, above the divisor, and the remainder, 24,

to the right of the 84, and so on for the rest.

General Rule.— In order to find the G. C. D. of two num-
hers, divide the greater number hy the less; if there is no remain-

der, the smaller number is the G. C. D.

If there is a remainder, divide the less number by this remain-

der } and if this division is without remainder, the first remain-

der is the G. 0. D.

If this second division gives a remainder, divide the first re-

mainder by thf i'wnd, and continu* always to divide the pre-
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ceding remainder hy the last remainder, until the division becomes

exact; then the last divisor employed will he the G. 0. D.
sought.

If the last divisor is unity, it is a proof that the two numbers
are prime with respect to each other. Reciprocally, if two num-
bers are prime with each other, and if we apply the method
above, we will find necessarily a final remainder equal to unity.

For, according to the nature of the method, the remainders go

on diminishing ; besides, we cannot obtain a remainder, nothing,

before having obtained a remainder, 1 ; since the divisor, different

from unity, which gave this remainder nothing, would be the

common divisor of the two numbers. Thus, we must, necessa-

rily, after a smaller or greater number of operations, obtain unity

for a remainder.

52. We give now the application of this method.

Reduce the fraction, |||, to its simplest form.

2

18_5
I /,

00

37

16

00

We find, for the greatest common divisor, 37, and, dividing

999, and 592, by 37, we have ^f , for the value of |||, reduced

to its least terms.

If we can find no common divisor greater than unity for the

terms of the fraction, the fraction is irreducible, its terms being

prime with each other.

Remark.— If, in the operation for the common divisor, we

arrive at a prime number for a remainder, as, for example, 5 or

7, we can conclude at once that unless this prime remainder

exactly divides the last divisor, the two primitive numbers have

no common divisor greater than unity. The reason of this is

obvious. We will return once more to the operation of the

1 1

999 592 407

407 185 37

999 37 592

259 27 222
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greatest common divisor, as it is one of the most important in

the arithmetic.

Second example, f |§g|. We find for G-. C. D. 1261, respective

quotients, 29 and 23; thus, || is the fraction reduced to its

simplest terms.

53. From what precedes, it results, that if from the two terms

of a fraction, we subtract the same multiples of the two terms

of the equivalent irreducible fraction, the resulting fraction is

also equivalent to the given one.

Let us take, for example, the fraction, ^|, which, reduced to

its least terms, according to the method indicated in the preceding

article, is equal to |. If, from the two terms, 18 and 24, of the

given fraction, we subtract four times 3, or 12, and four times 4,

or 16, we obtain a new fraction, |, which, expressed in simpler

terms than those of the given fraction, is equal to it. For, in

suppressing the factor, 2, common to 6 and 8, we find |, as for

the first fraction, ||.

It is easy to explain this result. For, if ^| is equal to |, an

irreducible fraction, of which the two terms are prime with each

other, 18 and 24 must be the same multiples (6 times 3, and 6

times 4), of the two terms of the fraction, | ; and when from 18

and 24 we subtract four times 3, and four times 4, we obtain

difi'erences, twice 3, and twice 4, which are also the same multi-

ples of 3 and 4; whence results a new fraction, |, equal to |.

It would seem that this proposition ought to furnish a means of

simplifying a fraction ; but we see that this means would be alto-

gether illusory, since it supposes the irreducible fraction known,

to which the given one is equivalent.

N. B. We would remark here, that we subtract from the two

terras of the fraction two different numbers, and not the same

number as in (48).

We pass, now, to the four fundamental operations upon frac-

tions.

7
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Addition of" Fractions.

64. The addition of fractions has for its object to find a single

fraction which shall express the value of the sum of several

fractions.

There are two cases ; the fractions to be added are either of

the same speciesj that is to say, have the same denominator^ or

of different species.

In the first case, we sutti up the numerators^ and then give to

this sian the common denominator.

In the second case, we reduce the fractions to the same deno-

minator ; after ichich we operate as in the first case. The reason

is obvious, since the denominator is a sign indicating the value

or species of the units to be added, and the numerator the num-

ber of these units.

^. 2 ^3 ^4 2+3+4 9
Thus, n+n+n= iir-==iT

In the same manner,

5_ . 1 , 1 , i _5+2+7+4_18
23 "^23 "'23 ^23"" 23 "~23

Let it be given, now, to add the three fractions,

2 3 7
3 4 H
8 6 3
16 18 21
54 24 24

After having reduced these fractions to the least common de-

nominator, 24, (No. 46), we add the numerators, 16, 18, and

21 ', we then give to the sum, 55, the denominator, 24.

We have thus || for the result required.

55. This last example ISads to a fractional expression, ^|,

greater than unity, which gives rise to a new operation.

We have seen that unity is equivalent to ||, or twenty-four

twenty-fourths; whence, it follows, that as many times as 55

contains 24, so many units there are in 4|. Now, dividing 55
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by 24, we have for a quotient, 2, with remainder, 7 ; thus, j-^ is

a number composed of 2 units and ^^. In general, when we

obtain a fractional result, of which the numerator exceeds the

denominator, in order to extract the whole number contained in

this expression, ice must divide the numerator hy the denomina-

tor. The quotient lohich loe obtain represents the entire number

^

and the remainder is the numerator of the fraction which is to

be added to the entire number, (43).

By this mode, we find,

17 1 5 . 153 10 3 ini • 65 4— 73 1

Reciprocally, when we have an entire number joined to a frac-

tion, in order to form a single fractional number, we must mul-

tiply the entire number by the denominator, add the product to the

numerator, and (jive to the sum the denominator of the fraction.

For example,

_2 3x5+ 2 17 ,, ^ 11x12+7 139 „

Subtraction of Fractions.

66. The subtraction of fractions has for its object to find the

excess of a greater fraction over a smaller.

If the two fractions have the same denominator, we subtract

the smaller numerator from the greater, and give to the difference

the common denominator.

If they have not the same denominator, we reduce them to

such as have ; after which, we proceed as in the first case.

Given, to subtract -^^ from |i ; there remain y^^, or 1. In

the same manner, ^|— ^'^^= 1 J=-J'^.

Given, to subtract | from |. These two fractions give ^| and

§i) by reduction to the same denominator; and we have

21 16_21—16 5

24 24
~"

24 ~24*

19 13_19x 17— 13x20 63

' 20 17~ 20x17 ""340'
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We can have an entire number joined to a fraction, to be sub-

tracted from an entire number joined to a fractiom ; or, as they

are called, a mixed numher, to be subtracted from a mixed
number.

Griven, for example, to subtract b\l from 12|.

12|=12f|=ll|<

5H= 5J|= 5JI

6i|.

We commence by reducing the two fractions to the same de-

nominators, which gives || for the first, and || for the second.

Then, as we cannot subtract |4 from |J, we take from the

entire part, 12 of the greater number, one unit, which we add

to the II, making |i
) we then subtract || from |^, and have

for a remainder, 4^. Passing to the subtraction of the entire

numbers, we regard the greater number as diminished by unity,

and subtract 5 from 11, which gives 6. We have thus 6|| for

the required result.

The same result could be obtained by reducing the mixed

numbers to single fractions by last article, and then following the

rule given for subtraction of fractions.

Multiplication of Fractions.

57. Multiplication has for its object in general, two numher

s

being given to form a third number, which is compounded with

the first number in the same manner as the second number is

compounded with unity.

This being established, we distinguish three principal cases in

the multiplication of fractions. We can have,

1st. A fraction to be multiplied, hy an entire number.

Given, for example, ^^^ to be multiplied by 5.

According to the definition above, since the multiplier, 5, con-

tains 5 times unity, it follows, that the product ought to be equal

to 5 times y^^, or 5 times as great as -^^. Now, we have seen in
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(43), that we render a fraction 5 times greater by multiplying its

numerator by 5. We thus have =^ or— , for the required

product.

Then, in order to multipli/ a fraction hy an entire number, we

must m,ultiply the numerator hy the entire number, and give to

the product the denominator of the fraction.

Given, to multiply jg by 9.

We obtain f| for the product, or 5y®g, or 5^. This result can

be obtained more simply thus. For, by (43), we can divide the

denominator by 9, instead of multiplying the numerator. And

we find thus, y , or 51, for the required product.

We can only apply this last method, when the denominator is

divisible by the number. The established rule is always appli-

cable. Usage alone renders us familiar with these simplifications.

2d. To multiply an entire number by a fraction.

Example.— 12 to be multiplied by ^.

Since, in this case, the multiplier, ^, is equal to 4 times the

7th part of unity, the product ought to be equal to 4 times the

7th of 12. Now, the 7th of 12 is equal to ^^ ] and, in order to

render this 4 times as great as L^^ -^^e must multiply the nume-

rator by 4 ; we thus obtain %f, or 6f , for the required product.

Then, to multiply an entire number by a fraction, we multiply

the entire number by the numerator, and give to the prodtict the

denominator of the fraction.

Thus, 29 X ^=:i^= 25|.

We might find this last result by dividing 24 by 6, and multi-

plying the result by 5.

But, we repeat, these simplifications are not always possible.

7=^
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3d. A fraction to be multiplied hy a fraction.

Example. — Griven, to multiply | by |.

The reasoning is analogous to that of the preceding case;

since I is equal to 5 times the 8th part of unity, the product

ought itself to be 5 times the 8th part of the multiplicand, |.

Now, in order to take the 8th of |, we must (43) multiply the

denominator by 8, which gives Z^-; and in order to obtain a

fraction 5 times as great as ^^, we must multiply the numerator

by 5; which gives ^j for the product required.

Then, to multiply one fraction hy another, multiply numerator

hy numerator
J
and denominator hy denominator ; then make the

second product denominator of the first.

We find, thus,

12^ 6 ~ 72*

, ^ 8 3 24 2

^^^r5^T = 6o = y-

N. B. In the two preceding cases, the product is always less

than the multiplicand ; and this ought to be the case, since the

operation is really taking a part of the multiplicand indicated by

the fractional multiplier.

58. Finally, one of the factors of the multiplication, or both

of them, may be mixed numbers. These numbers are equivalent,

respectively, to the improper fractions, (the fractions greater

than unity being called improper fractions), ^^ and "^^
;

per-

forming the multiDlication of these by the rule above, we obtain

^§fSor453V.

We could effect this multiplication by parts ; that is to say,

multiply, first, 7 by 5, | by 5, 7 by |, and | by | ; then add these

four products ; but this method is much the longest.
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Division op Fractions.

59. Division has for its object: Given.y the product of two

factors, and one of the factors to determine the other.

It results, obviously, from this definition, and from that of

multiplication, that the first number, called dividend, is com-

pounded with the third, called quotient, in the same manner that

the divisor is compounded with unity.

This established, in the division as in the multiplication of

fractions, we distinguish three principal cases.

1st. To divide a fraction hy an entire number.

Given, for example, |, to be divided by 6. Since the divisor

is 6 times unity, it follows, that the dividend, f , is equal to 6

times the required quotient; then, reciprocally, the quotient

ought to be the 6th part of f . Now, in order to take the 6th

part of a fraction, or to obtain one 6 times as small, we must (43)

5 5
multiply the denominator by 6 ; thus, we obtain —-: -, or t-^,

for the required quotient.

Then, to divide a fraction by an entire number, multiply the

denominator of the fraction hy tlie entire number, leaving the

numerator the same.

Thus, 11 divided by 8 = -^ = |1.

23 23
In the same manner, ^ divided by 12 = -^^.

oU 360

The quotient of ^f by 6, is
-^f^ ; but we can efiiect the divi-

sion of Jl by 6, by taking the 6th of the numerator, which gives

^j^; the same with -^f^, when we suppress the factor, 6, com-

mon to the two terms. Then we add to the above rule, or divide

the numerator hy the divisor, when that is possible.

2d. To divide an entire number by a fraction.

Given, to divide 12 by J.
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Since the divisor, |, is equal to 7 times the 9th part of unity,

it follows, that the dividend is also equal to 7 times the 9th part

of the required quotient. Then, taking the 7th of 12, which

gives L2^ we will have the 9th of the quotient sought; and to

obtain this quotient itself, we must take 9 times
^^f,

which is

done by multiplying the numerator by 9; we thus obtain

9 times 12 108 ,,-,.,
, or—, equal to 15|.

Then, in order to divide an entire number hy a fraction, we

must multiply the entire 7iumher hy the denominator, and divide

the product hy the numerator.

Or, we can say, as we have here multiplied 12 by |, multiply

the entire numhcr hy the fraction inverted.

3d. To divide a fraction hy a fraction.

Griven, to divide | by
-f^.

The reasoning is like the preceding. The divisor, -^j, being 8

times the 11th part of unity, the dividend, |, is also equal to 8

times the 11th of the quotient; then, the 8th of |, or -^^^ is the

11th of the quotient; and 11 times
-f^,

or ||, is the quotient

sought.

Then, to divide a fraction hy a fraction^ we must multiply the

numerator of the dividend hy the denominator of the divisor,

and the denominator of the dividend hy the numerator of the

divisor ; then make the second, product the denominator of the

first.

Or, in simple terms, multiply the dividend hy the divisor vnth

its terms inverted.

Thus, 1-^•f= 1 times 7 2 1 1

ft—30— -L3V

In the same manner.

28
.
13

30 • r5~
23

'30
15

^r3
=

23 X 15

"30x13
345

~390'

(We could have suppressed the factor, 15, obviously common

to both terms of the product in this last example, before perform-

ing the multiplication).
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N. B. Whenever, in the division of fractions, the divisor is

less than unity, the quotient will be greater than the dividend.

For this quotient results from the multiplication of the dividend

by the divisor inverted, a number greater than unity.

60. Finally, if we have a mixed number, we reduce first the

entire parts to fractions, and then proceed as in the case above.

Given, 12| to be divided by 6|. We have

193_:_fi2 51_i_20— 51v 3 153

In the same manner,

7 8 _i_1 Pis 85_i.l25 — 85 V 8 680

Remarh.— The rules for the division and multiplication of

fractions can be very readily deduced by regarding them as un-

performed divisions.

Remarh II.— It is evident that the division of fractions can

give rise to fractions with fractional terms, or complex fractions^

as they are sometimes called. We can have, for example,

1, ^j:!!A,
I ^^^^^ i

^

f 24+ 1 4f times f

Which are reduced to fractions of two terms by performing all

the operations indicated upon the separate fractions, according to

known rules.

Fractions op Fractions.

61. To the multiplication of fractions attaches itself another

species of operation, known under the name of the ride for frac-

tions of fractions, or compound fractions.

In order to give an accurate idea of this operation, suppose,

first, that we have to take a part of the fraction, |, indicated by

the fraction, |, As this is the same thing as taking twice the

third of f,
or (57), multiplying | by |, we have for result,

5 times 2 10

7 times 3' 21*
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Suppose, DOW, we wish to take a part of JJ, indicated by the

fraction,
-f.^ ; we would have, as above, ———- =-——, and this

last expression would represent -^^ of | of |.

Hence, we see, that in order to take fractions of fractions, we

must multiply all the numerators togetherj and all the denomi-

nators together, and give the last product as denominator to

the first.

When we have to take fractions of fractions of a given entire

number, we put this entire number under the form of a fraction,

having 1 for denominator, and apply the rule which has just been

established.

Thus, the | of | of f of f of \^= ^
• 3 •

|
;
«

;
^^^ = M^, or,

reducing, 3^ 44 ^ 3_3_.

We can simplify these, and similar operations, by suppressing

the factors common to both terms.

Thus, in the example, | of | of -{^^ of ^ of \^, if we suppress

the common factors, we have

3x5
or y, or 7^.

Approximative Valuation of Vulgar Fractions.

62. Tn order to complete the general theory of fractions, we

will resolve the following question, which has many useful appli-

cations.

Given, an irredueihle fraction, of luhich the terms are so large,

that it is dijfficuH to form an accurate idea of its value, to replace

it hy another ichich approaches it in value to within certain

limits, but whose terms are much more simple; that is, which

have for denominators, 2, 3, 4, 5, 6, &c.

Take, for example, the fraction, |||. We propose to find its

approximate value in twelfths, (i. e.) to replace it by a fraction

having 12 for denominator.
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We remark, first, that unity being equal to if, |f| of unity

523 X 12
are equal to ffj of j|, or equal to g^g^^- Multiplying 523

by 12, we obtain 6276 ; which, divided by 949, gives 6 for quo-

tient, and 582 for remainder. Then, the fraction is y^^, with the

582
remainder, niQ-^o, less than j\. Hence, -j^^ is the value of

the fraction to within less than j^^.

63. In general, in order to transform a fraction, -, into ano-

ther having a denominator, n, at the same time differing from the

first by less than - , we have the following rule.

Multiply the numerator of the proposed fraction hy 7i, and

divide the product hy the denominator.

Form
J
then, a new fraction, having for numerator the entire

part of the quotientj and n for denominator.

General Observations on Fractions.

64. It results, obviously, from the nature of the methods

established for the calculus of fractions, that the four fundamen-

tal operations performed upon them, to wit : addition, subtrac-

tion, multiplication, and division, are reduced always to the same

operations performed on entire numbers.

Thus, for example, the addition and subtraction of fractions

is brought back, by the reduction to common denominators, to

the addition and subtraction of their numerators.

In the same manner, multiplication of fractions is effected by

multiplying the numerators together, and the denominators.

Division of fractions becomes multiplication, after inverting the

divisor.

We conclude from this, that the principles established in

Nos. 25 and 26, upon the multiplication of entire numbers,

are equally applicable to fractions ; that is to say, 1st, to multiply

a fraction by the product of several others, is the same thing as
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to multiply the first fraction successively hy each one of the factors

of the product: 2d, the product of two or more fractions is the

same in whatever order we perform their multiplication. In

fine, we can apply to fractions all the propositions established in

(40), concerning the changes which the product of a multiplica-

tion, or the quotient of a division undergo, when we cause one

of the terms of the operation to undergo certain changes. We
can multiply or divide both terms of any fractional expression

whatever by the same number, without altering its value; and

so on of other principles. We can deduce from the definition

of multiple and submultiple, or divisor of a number, that there

exist fractions which are multiples and submultiples of other

fractions, in the sense that the division of the multiple fraction

by the submultiple gives an entire quotient. Thus, the fractions,

J|, 3j^3, 2^3, • • • • are multiples of 3^^, since they contain the

latter, 6, 4, 3 ... . times, without remainder.

In general, every fraction has for divisors its half, its third, its

fourth, &c. ; whence, it follows, that the number of its divisors

is infinite, which is not true of entire numbers, if the divisors

are to be entire.

Two fractions can also have common divisors; thus, ||, -^^^

have for common divisor the fraction, -^^^ and all its submulti-

ples ; for the quotients of || and -^^j divided by -^^^ are re-

spectively 5 and 2, entire numbers. We can, then, generally

establish, with relation to fractions, properties analogous to those

which we have proved concerning the greatest common divisor,

and the least common multiple of two or more numbers.
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CHAPTER III.

COMPOUND NUMBERS.

65. The theory of compound numbers we place here as an im-

mediate application of the theory of vulgar fractions. The units

of smaller denominations being fractions of the principal units,

or units of higher denominations, and fractions being really no-

thing more than units of lesser value than the principal unit with

which they are compared. We can thus, in the number, 5|,

regard the ninths as simple units, and 5 as a number made up

of compound units, each one equal to 9 times the simple unit
3

and the 9 under the 4 is the sign or denominator, showing the

relative value of the simple units expressed by the number, 4.

Thus, we have seen, in (No. 8), that in order to value quantities

smaller than the principal unit, we conceive this unit divided

into a certain number of equal parts, which we regard as forming

new units. In the theory which now occupies our attention, the

principal unit is first divided into a small number of equal parts,

then these are divided into others, and these new parts into

others, &c., &c.

Thus, for coin, the pound sterling, English, is divided into 20

parts, called shillings ; the shillings into 12 parts, called pence,

&c. In the same manner, the unit of length, the yard, is divided

into 3 parts, called feet ; the foot into 12 parts, called inches, &c.

66. Every art, each trade, each country, subdivides the prin-

cipal unit, according to its own method.

The following tables give for the most important o^these quan-

tities, the principal units and their subdivisions ; that is to say,

those which follow the analogies of vulgar fractions. The deci-

mal divisions of the principal units we reserve for the chapter on

decimal fractions.

8
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TABLES

In the estimation of time, the year is adopted as the principal

unit j the subdivisions being, months, weeks, days, hours, minutes,

peconds.

The year is divided into 365 days.

The day 24 hours.

The hour 60 minutes.

The minute 60 seconds.

(The minutes and seconds are generally indicated by ' and ".)

Or we may write the table thus

:

One second = ^^ of a minute.

One minute = g*^ of an hour.

One hour = ^^ of a day.

One day = ^ of a week.

Ex.— 5 days, 6 hours, 25 minutes, and 36 seconds, may be

written either in columns, bd, 6h, 25', 36", or thus

:

6 + ^4 + U of 5\ + IS of 5*0 of
3S\-

COINS.

Of coins, we give only the chief divisions of the English cur-

rency; the American and French coming under the decimal

systems.

English Money.

One pound sterling = £ is divided into 20 shillings.

One shilling =s 12 pence.

One penny = c? 4 farthings.

Or we may write it thus :

One farthing =
^J

of a penny.

One penny = y^^j of a shilling.

One shilling = .^^ of a pound.

Ex.— 5 pounds sterling, 6 shillings, and 10 pence, may bo

written £5, 6s., 10^., or £5 -\-^ + |? of -^-q.
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WEIGHTS.

The standard avoirdupois pound of the United States, is the

weight of 27-7015 cubic inches of distilled water weighed in

air, at a fixed temperature. This gives us a fixed unit of com-

parison, or a principal unit of weight, of which the other divi-

sions of the table are either multiples or submultiples.

TABLE OF AVOIRDUPOIS WEIGHT.

The ton is divided into 20 hundreds = cwt.

The hundred weight 4 quarters = qrs.

The quarter 28 pounds = lbs.

The pound 16 ounces = oz.

The ounce 16 drams = dr.

The cwt. in this table contains 112 Ihs., but the cwt. of one

hundred pounds is very generally adopted in commerce, as more

convenient, and much better adapted to the decimal system of

the Federal money.

TROY WEIGHT.

The standard Troy pound of the United States is the weight

of 22-794377 cubic inches of distilled water, weighed in air at

a given temperature.

,
TABLE.

The pound (flb) is divided into 12 ounces = oz.

The ounce 20 pennyweights = dwt.

The pennyweight 24 grains = grs.

(7000 grains Troy make 1 lb. avoirdupois.)

The Apothecaries' weight for mixing medicines has the same

principal unit as the Troy weight, but difiers only in its subdivi-

sions.



COMPOUND NUMBERS.

TABLE.

The pound (lb) is divided into 12 ounces = ^

.

The ounce 8 drams =5.
Thedram 3scruples = 9.

The scruple 20 grains =r gr.

(The English pound, Avoirdupois and Troy, differ a little from

those of the United States).

MEASURES OF LENGTH, AREA AND VOLUME.

Long Measure.

The principal unit of length is the yard, which is determined

on the principle in physics that the pendulum which vibrates

once in a second at the same place on the earth's surface, under

the same surrounding circumstances, has a fixed and invariable

length. This pendulum, or metal rod, is then divided off accu-

rately, and a certain number of these subdivisions is called a

yard. For the United States, the length of the pendulum is

determined in New York city.

TABLE.

12 inches make 1 foot.

3 feet 1 yard.

6 feet 1 fathom.

5^ yards 1 pole or perch.

40 poles 1 furlong.

8 furlongs 1 mile.

3 miles 1 league.

MEASURE OP AREA, OR SQUARE MEASURE.

The principal unit here, with which surfaces are compared, is

a square whose side is 1 yard, or square yard.
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TABLE.

144 square inches make = 1 sq. foot.

9 sq. feet = 1 sq. yard.

30| sq. yards = 1 sq. pole or percA.

40 perches = 1 rood.

4 roods = 1 acre.

The acre then contains 4840 sq. yards. For larger areas, we

have the square, one of whose sides is a mile. This square mile

contains 640 acres, (called a section in the public lands of the

United States).

CUBIC, OR SOLID MEASURE.

The unit of volume, or solid measure, is a cube having one

yard for its side, the other divisions being either multiples or

subdivisions of this.

TABLE.

1728 cubic inches = 1 cubic foot.

27 cubic feet = 1 cubic yard, &c., &c.

The relations between the three tables of long measure, square

and cubic measure, depend upon simple geometrical principles,

which the student will find developed in any elementary work

upon that subject.

LIQUID MEASURE.

The standard gallon of the United States is the wine gallon^

which is equal to 231 cubic inches.

The gallon is divided into 4 quarts.

The quart 2 pints.

The pint 4 gills.

For the higher measures,

63 gallons = 1 hogshead.

2 hogsheads =^ 1 pipe or butt.

4 hogsheads = 1 tun.

8*
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DRY MEASURE.

The principal unit is the bushel. The standard bushel of the

United States measures 21504 cubic inches. The names of the

subdivisions, though the same as in liquid measure, do not repre-

sent the same volumes. The gallons^ quarts, and pints, in liquid

measure, measure respectively, 231, 57|, and 28| cubic inches;

while in dri/ measure, they measure 268|, 67 J, and 33| cubic

inches respectively.

TABLE.

The bushel is divided into 4 pecks.

The peck 2 gallons.

The gallon 4 quarts.

The quart 2 pints.

(The English imperial gallon measures 277*274 cubic inches.)

We see from these tables the great importance of determining

accurately the standard of length, as all the other principal units

of commerce depend upon this. Thus, the standard of dry and

liquid measure is a certain number of cubic inches. The standard

weight is a certain number of cubic inches of water. The standard

of money is a coin containing a given weight of metal.

67. We call a compound number every concrete or denominate

number, which contains, at the same time, one or more principal

units of a certain species, and one or more subdivisions of this

unit, or simply one or more subdivisions of the principal unit

alone. Thus, £10 12s. Sd., 2b mis. 4:fur. 1yds., 70 days, 23

hours, 10 min., or simply 12s. lOc/., 4 A. iOmin., &c., &c., are

compound numbers.

But, £10, or 10s., or 23 hours, are not compound numbers,

considered thus isolated. The resolution of the following ques-

tions serves as a basis for the four fundamental operations on

compound numbers.
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68. Question first.— A compound number being given^ to re-

duce this number^ or express it in units of the smallest subdivi-

sion of the principal unit.

Given, for example, 2lb. 4toz. 17 dwfs. bgrs., to be converted

into grains.

It results from the tables, that the pound equals 12 ounces.

Therefore, 2 lb. 4 oz..= 2 X 12 + 4 = 28 02., or, 2/^ lb= f| lb.

In the same manner, the ounce equals 20 dwt. Hence, 28 oz.,

17 dwt. = 28 X 20 + 17 pennyweights = 577 dwt., or, 281^ =
^y oz. Again, 577 dwt. bgrs. = 577 X 24 + ^grs. = 13853

grains, or, 5773j\ = ^ \%^ ^ dwt.

GrENERAL RuLE.— Multiply
j first, the number of principal

units by the number of units of the first subdivision which the

principal unit contains, and add to the product the units of this

first division, which are contained in the given number. Then

multiply the result thus obtained by the number of units of the

second subdivision which the first contains, and add to this second

product the units of the second subdivision, which enter into the

given compound number ; and thus, in succession, until we arrive

at the last subdivision or denomination.

We will find, by this method,

1st.— 59 ft). 13 dwts. 5 gr. = 340157 gr.

2d.— 121 lb. Os. d^d. = 58099 halfpence.

3d.— 23 h. 55 min. 19'' = 26119 seconds.

69. Second question.— Reciprocally, given a number of units

of a certain division of the principal unit, to be converted into a
compound number. The rule to be followed is evident from what

precedes, and can be enunciated thus

:

Divide, first, the proposed number, by the number which ex-

presses how many times the given subdivision is contained in the

subdivision next higher ; v:e obtain thus for quotient, a certain

number of units of this next higher division, andfor remainder

the units of the given denomination which are to enter into the

compound number sought. Divide, then, the quotient obtained
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hy the numher whicJi expresses liow many times the suhdivision

next higher is contained in the denomination higher hy txoo than

the given one ; we obtain a new quotient^ which contains a certain

numher of units of the third denomination^ of which we have

just spoken, and a new remainder, expressing the units of the

denomination next to the given one, which make part of the com-

pound numher sought. Continue thus, until the quotients cease

to he divisible by the numher expressing the relation between the

value of two successive denominations.

N. B. If we obtain for any one of the remainders, this proves

that the denomination corresponding is wanting in the number

sought.

Let us apply this rule to the first example of (68).

13853
1

190
24

20
185

173

577

177

17

28
1
12

4 12

Or thus

:

13853 ^r.

577 dwt.

28 oz.

Result, 21b. 4loz. 11 dwt. bgr.

24: = 677 dwt. + 5gr.

20 = 28 oz. + 17 dwt.

--12= 21b -f 4:0Z.

70. Question third.— To convert a given compound numher

into a fraction of the principal unit.

This is also a consequence of (68).

Take, for example, 21b. 4:oz. 17 dwt. 5gr. This, reduced to

grains, gives 13853 grs. ; and, by the tables of (66), 1 gr. is ^^^j

of ^^ of
-f\j

of a pound, or j^^^^ of a pound ; the required frac-

tion is obviously then VWo^ ^^ ^ pound.
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Rule.— Commence hy reducing the given compound number

into units of the lowest denomination which it contains; then

form a fractional number which has for numerator the number

thus obtained, and for denominator the ntimber of units of this

lowest denomination which the principal unit contains.

We will find, by this method, 23 h. 55' 9"= J^^=^^
of ail hour.

71. Question fourth.— Reciprocally
j
given, any fractional

number of the principal unit of a certain denomination, to con-

vert it into a compound number.
OPERATION.

Given, for example, | of a mile to be converted 5

into furlongs, poles, &c. Since each mile equals eight 8

furlongs, f of a mile is f of 8 furlongs ; equals "^^ of 40
|
7

1 furlong. We then divide 40 by 7 ; the quotient, 5 5

5, expresses obviously the furlongs, and the remain- 40

der, 5, with the divisor, 7, for denominator, is a 200
|
7

fraction of a furlong which it is necessary to reduce 60 28

to poles. Now, 1 furlong equals 40 poles; hence, ^ 4

of a fur. = f of 40 poles, equals —-— of 1 pole. Per- —-
^

7 Z2i
I

7

forming the operations here indicated, we have 28 for 1 | 3

quotient, and 4 of a pole, for the fraction correspond-

ing to the remainder
; ^ o^ ^ P^^^ = 4 ^^ ^i yards= ^ of a

yard, which is equal to 3^. Hence, the required compound num-

ber is 5 fur. 28 pis. 3| yds.

General Rule.— In order to convert a fractional number

of any principal unit into a compound number, obtain first the

entire number, if there be one, contained in the fraction; you

obtain thus a certain number of the principal units.

Multiply, then, the renfiainder of this division, by the number

which expresses how often the principal unit contains the next

lower subdivision, and divide this product by the denominator

of the given number ; ice thus obtain a certain number of units
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of this next lower suhdiviswn, and a second remainder. Pro-

ceed with this remainder in the same mannerj until you arrive

at a result with no remainder^ or exhaust the suhdivisions-of the

principal unit.

N, B. Principal unit can apply to any one of the denomina-

tions of the tables (66), which has itself been subdivided ; that

is to say, every subdivision can be principal unit to the subdivi-

sions below it.

72. Remark I.— The operations of the two last rules can serve

as verification for each other. Thus, in applying (71), to the

fractional numbers of (70), we ought to reproduce the four com-

pound numbers which correspond. In the same manner, we can

verify the result of (71), by means of the rule in (70).

73. Remark IL— The principles which have just been deve-

loped would be, properly speaking, sufficient to permit us to per-

form the four fundamental operations of arithmetic upon com-

pound numbers.

We would thus pursue the following method

:

1st. Transform the compound numbers, each one into a frac-

tion of the principal unit corresponding.

2d. Perform upon these fractional numbers the operation pro-

posed (^according to the rules of the calculus of fractions^ which

icill give for a result a fractional number.

3d. Convert this fractional number into a compound number

of the species indicated by the nature of the question.

Nevertheless, since the direct methods of performing the four

fundamental operations upon compound numbers give rise to im-

portant observations, and offer for the theories which we shall

develop later, useful applications, we will proceed to discuss them,

as simply as possible, with very simple examples.

ADDITION AND SUBTRACTION.

74.— 1st. Addition.— Place (as in abstract entire numbers),

the given numbers, one under another, so that the units of the

same denomination fall under each other ; after whichy make
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the addition of the units contained in each column^ commencing

on the right.

If the sum of the units contained in a column exceeds the

number which expresses how many times the unit of the denomi-

nation corresponding is contained in the unit of the next higher

denomination, we divide the sum obtained by this number (69)

;

we obtain thus a remainder, (^possibly 0^) which we write below

the horizontal line drawn under all the columns, and a quotient

which we carry to the units of the following column ; we operate

in the same manner upon this column, and upon each successive

column. (This rule is obviously established by the same reason-

ing which was given for the rule in simple addition of abstract

numbers).

2d Subtraction.— Write the smaller number under the

greater, so that the units of the same denomination fall under

each other ; then subtract successively, one from the other, the units

of each denomination, commencing with the loivest.

When, in any one of the columns, the number of units to be

subtracted is greater than the number from which it is to be

taken, we add to this latter (14), a unit of the denomination next

higher, converted into units of the denomination on which we are

operating ; the partial subtraction becomes possible. We must

take care, however, to augment the next number to be subtracted

by the one unit borrowedfrom this denomination.

(This rule is obviously founded on the reasoning for subtrac-

tion of simple numbers).

We give below some examples

:

£ s. d. K>. oz. dwt. gr.

17 13 4 14 10 13 20

13 10 2 13 10 18 21

10 17 3 14 10 10 10

8 8 7 1 4 4 4

3 3 4 45 • 7 7

8 8 13 2 12

54 1 4

Proof

23 32 Proof
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SUBTRACTION.

£. s. d. mis. fur. pol. yd. ft. in.

67 13 8 14 3 17 1 2 1

49 17 11 10 7 30 2 10

7 15 9 3 3 26 ^~l 3

57 13 8 Proof 14 3 17 1 2 1 Proof

The methods of verification are the same as in abstract num-

bers, taking care to preserve the relative values of the units

carried from the columns of higher denominations to lower, as in

the verification of addition, and from lower to higher, as in sub-

traction.

MULTIPLICATION.

75. To multiply a compound number by a simple factor, we

consider the multiplication of each denomination of the compound

number as a separate question ; then reduce the partial products

to compound numbers by (69), and add these compound numbers

by last article. Or, what is the same thing, commence on the

right hand, and proceed with the multiplication as in simple

numbers, taking care to preserve the proper relative values be-

tween the successive columns.

Thus, £4 13s. M. to be multiplied by 9.

£ .9. d.

4 13 3

9

41 19 3

9 times 3 gives 27, which we reduce to shillings, giving 2 for

quotient, with 3 remainder; set down the 3, and carry the 2 to

the next multiplication; 9 times 13 gives 119 ~ £5 19s. We
set down the remainder, and add the 5 to the product of 9 by £4,

giving £41. If we have one denominate number to be multiplied

by another, we reduce multiplicand and multiplier to fractional

numbers of their principal units by (70); then multiply, and

reduce the result back to the compound number required by the
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question ; or we may simply reduce the multiplier to such a frac-

tion, and proceed as in the first example.

Example. — £2 5s. to be multiplied by 101b boz. avoirdupois.

We may either multiply |J by Le_5^ and reduce theiresult to pounds

and shillings, or we may multiply £2 5s. by ^g^, reducing each

result separately.

76. Remarh.— It xesults obviously from this mode of pro-

ceeding,

1st. That although the multiplier is a denominate number, yet

we consider the principal unit of this factor and its subdivisions

as abstract numbers, which express the number of times we must

take the multiplicand, and what parts of it we must take, in order

to obtain the required result \ but we preserve always in the mul-

tiplicand its essential quality of concrete number.

2d. That all the partial products and the total product are

always of the same nature as the multiplicand.

Certain questions of Geometry, however, namely : those which

have for their object the measure of surfaces and volumes, give

rise to operations which form exceptions to this general principle.

The considerations on which these are founded do not belong to

arithmetic.

DIVISION.

We will dwell but little on this operation^ in effecting which,

in general, it is better to apply the method established in (73).

Nevertheless, we will consider the two principal cases which can

present themselves.

77. Ca&e I.— In which the dividend and divisor are com-

pound numbers of the same species. For example :— Required,

How many yards of a certain work can we have executed for

£75 19s. 6d., if one yard cost £8 15s. Qd. ?

It is clear that, for the resolution of this question, we must

determine how many times the smaller of these two compound

numbers is contained in the greater. This is effected, 1st, by
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reducing the two numbers to tlie lowest denomination which

enter them ; 2d, by then dividing the entire numbers thus ob-

tained one by the other. The quotient is at first an abstract

number, which, according to the enunciation of the question, can

then be expressed in yards, feet, inches, &c. Converting the two

given numbers to pence, we find 18,233£7. and 210Qd. The frac-

tional number then will be ^^Wg , which can be converted into

yards, &c., by rule in Art. (71).

78. Case II. — That in which the dividend and divisor

are of different sjjecies. In this case, whatever be the question

proposed, the quotient must express principal units of the same

species as the dividend ; since it is necessary that the dividend,

considered as a product, must be of the same species as one of its

factors. Eut then, the compound divisor, being converted into a

fractional number of the principal unit, becomes an abstract

number, by which we must divide the dividend, which is done by

multiplying the dividend by this fraction inverted (60).

79. Remark I.— We conclude from the above, 1st. That in

every division of compound numbers, if the two numbers are of

the same species, the quotient is considered first as an abstract

number, which we make express the units and subdivisions of

units, fixed by the enunciation of the question. This quotient is

to be the multiplier in the verification of the operation by multi-

plication.

2d. That if, on the contrary, the two terms of the division are

of difi"erent species, the quotient expresses necessarily units of

the same species as the dividend ; while the divisor, though com-

pound at first, is to be regarded as an abstract number, which

plays the part of multiplier in the verification of the operation.

80. Remark II.— So far, we have only ^iven one method of

verifying multiplication, viz : the method by division, and reci-

procally. But in the practice of the operations upon compound

numbers, it is generally more convenient to verify, 1st, Multipli-

cation, by doubling one of the two factors, and taking the half
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of tlie other; then performing the operation anew with the re-

sulting numbers. 2d, Division, by doubling the two terms of

the division. We avoid thus the difficulties arising from the

vulgar fractions, which ordinarily accompany the results ar-

rived at.

It is evident that this means of verification can also be em-

ployed with entire abstract numbers.

EXERCISES.

1. Find a nifmber, the 'i, the |, |, and | of which, added to-

gether, form a sum which, diminished by 139, gives 1289 for

remainder.

2. A reservoir is filled by four difi'erent pipes. The first can

fill it alone in 5 hours ; the second in 7 hours ; the third in 9

hours; the fourth in 11 houi*s. Required, the time of filling the

reservoir, all four pipes being opened at onc6.

3. The population of Asia is estimated at 390,257,000 inhab-

itants : Required the population of Europe, Africa and America;

knowing that the population of Europe is -^^ of the population

of Asia; that of Africa, -j^y of that of Europe; and that of

America, j\ of the same.

4. The sea covers i| of the whole surface of the globe. The

surface of Asia is equal to ^^V ^^ ^^^^ ^^ Europe ; that of Africa

is ^^ of the same; that of America, y^^ ; and that of Oceanica,

1^ ; we know, besides, that Africa has a superficies of 13,450,000

square miles. Calculate the superficies of the other parts of the

world, and deduce the number of square miles in the whole

surface.

5. Demonstrate that, by adding the same number to the two

terms of a fractional number, we obtain a result which approaches

unity more as the number added is greater. Show that the dif-

ference between the result and unity can become less than any

given quantity.
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6. Find the method of obtaining the greatest common divisor

of two or more fractions. Apply to the fractions,

3 5 7 19

7. Demonstrate the method for obtaining the least common

multiple of several fractions.

Apply to the fractions,
-f^, IJ, !§.

8. What is the greatest common multiple of the fractions, ||,

-/p and If, less than 100,000.

9. What will be the price of a piece of stuif, 23^'^ yards long,

each yard costing £5 10s. Qd. ?

10. 87 R). 10 0^. 5(7r., of a certain material, was bought for

50£ lis. del. What is the price per pound ?

CHAPTER IV.
»

0/ Decimal Fractions, and their Principal Properties— Of tlie

Decimal Systems of Compound Numbers.

I. -DECIMAL FRACTIONS.

81. Introduction.— In the ordinary system of numeration, the

most simple method, and the most convenient one of subdividing

unity, is the suhdivision into successive 2Jarfs, decreasing in a ten-

fold ratio. From this mode of subdivision result fractions

which have for denominators unit?/, followed hy one or more

7:eros^ and these fractions we call decimal fractions.

This mode of subdividing unity oflers great advantages, inas-

much as it reduces immediately, or at least by very simple trans-

formations, all the operations upon fractional numbers, to simple

operations upon entire numbers. These methods we will develop

f fter having made known the numeration of decimal fractions;
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that is, their nomenclature, and the manner of writing them in

figures.

82. Numeration of Decimals.— As, by increasing unity ten-

fold, one hundred-fold, &c., successively, we form new units, to

which we give the name of tens, hundreds, thousands, and so-

forth, in the same manner we conceive unity to be divided into

10 equal parts, which we call tenths, each tenth divided into 10

equal parts, which we call hundredths, (because the principal

unit contains 10 times 10, or 100 of these new parts or units)

;

then each hundredth divided into 10 equal parts, called thou-

sandths, and so on; thus giving ten thousandths, hundred thou-

sandths, &c.

In the second place, it results, (5), from the fundamental

principle of the written numeration of entire numbers, that the

figures, proceeding from right to left, have their relative value

increased tenfold for each place to the left, and decreased ten-

fold, going from left to right. Whence it follows, that if to the

right of an entire number written in figures we place new figures,

taking care always to distinguish them by any sign whatever, a

comma or point for example, from the entire number, we shall

thus represent successive parts of unity, decreasing tenfold to

the right ; that is, tenths, hundredths, thousandths, &c.

Thus, the collection of figures, 24,75, expresses 24 luiits, 7

tenths, and 5 hundredths; 5,478 equals 5 units, 4 tenths, 7 hun-

dredths, and 8 thousandths.

83. Let it be required to enunciate in ordinary language the

number 56,3506. This number can at first be enunciated 56

units^ 3 tenths, 5 hundredths, thousandths, and 6 ten thousandths.

But 3 tenths are equal to 30 hundredths, or 300 thousandths, or

3000 ten thousandths; in the same manner, 5 hundredths are

equal to 50 thousandths, or 500 ten thousandths The number

can then be enunciated 56 units, and 3506 ten thousandths.

Thus, in order to enunciate in ordinary language a decimal

fractional number written in figures, we must enunciate sepa^

ratelij the entire part, and then enunciate the part ichich is to

*



102 DECIMAL FRACTIONS.

tlie right of tlie comma, as an entire rnnnhcr, aiving at the close

the name of the unit of the last decimal aubdivisicrii.

Thus, 7,49305 represents 7 uniu and 49305 hundred thou-

sandths. In the same manner, 249,007,056 represents 249 units

and 7056 millionths. We can also, if we wish, include in one

single enunciation the entire as well as the decimal part

Take, for example, the number 56,3506. As one unit equals

10 tenths, or 100 hundredths, 1000 thousandths, &c., it follows,

that 56 units are equal to 560000 ten thousandths ; and, conse-

quently, 56,3506 represents 563506 ten thousandths. That is,

we must, after enunciating the number as if it had no comma,

place at the end of the number thus enunciated, the name of

the last subdivision. It is customary, however, to enunciate the

entire part separately.

We will indicate a method for enunciating the decimal part,

which, in general, is more convenient in practice. After an-

nouncing the entire part, as we have just said, separate mentally

the decimal part into periods of three figures, beginning at the

comma, (the last period having often only one or two figures)

;

enunciate then each period or division separately, and place at

the end of each partial enunciation the name of the last unit

of the period.

Example.—The number, 2,74986329, is enunciated; 2 units,

749 thousandths, 863 millionths, 29 hundred millionths.

84. Reciprocally, we propose to write in figures a decimal

fraction enunciated in ordinary language.

Required to write in figures the number; twenty-nine units,

three hundred and fiftyfour thousandths. Write first the entire

part, 29 ; then, as 300 thousandths are equal to 3 tenths, and

50 thousandths equal 5 hundredths, place a comma to the right

of 29, and write successively the numbers 3, 5, and 4 ; we thus

have 29,354.

Iq like manner, one hundred and' nine units, two thousand

and three ten thousandths, are written 109,2003.
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Required, again, to write the number eight units, thirty-seven

thousandths. As thirty thousandths make 3 hundredths, and as

there are no tenths in the number enunciated, we write 8,087;

that is to say, we make the same use of the in both these last

cases as in whole numbers, placing it here to the right of the

comma, to take the place of the tens which are wanting, and to

give the figures which follow their true value.

GrENERAL KuLE.— In order to write, in figures, a decimal

enunciated in ordinary language, commence hy writing the entire

part, and after it a comma or point; then write successively, to

the right of this point, the figures luhich represent the tenths, hun-

dredths, &c., included in the number, taking care to replace hy

zeros the different orders of unit^s which are wanting. If there

is no entire part, lorite a to take the place of it, and proceed

v:ith the decimalpart as before.

Thus, seventeen hundredths are represented by 0,17; one

hundred and twenty-five ten thousandths by 0,0125.

It may happen that, in the enunciation of the number, the

entire part is not distinguished from the decimal part. We must

then write the number as if it expressed entire units, and then

place a point so that the last figure to the right shall express the

units of the last subdivision of the number enunciated.

For example, in order to write the number four thousand. Wo
hundred and fourteen hundredths, write first 4214 ; and, as the

last figure must express hundredths, place the comma between

the 2 and 1, giving 42,14. Two hundred and fifty-three thou-

sand and twenty-nine ten thousandths, are represented by

25,3029.

85. Decimal fractions placed under the form of vulgar frac-

tions. A fraction being composed of two terms, the numerator

and the denominator, the comma serves, in the method which we

have just developed, to indicate the denominator, which is equal

to unity, followed by as many zeros as there are decimal figures

;

that is, figures to lAe right of the comma. The numerator, we
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have seen, is composed of the collection of figures to the right

of the comma. Or, if we consider the entire part"as reduced to

a fraction, the numerator is then the number given, with the

comma stricken out. Thus, the number, 23,6037, put under the

form of a vulgar fraction, is 23fgO_3j7_^ qj.^ 2_35__o^3J7^ The number,

2,00409, is equal to 2^/oVoo. or, f gg-J-oa. Finally, 0,0002154,

is equal to _^§f54^^. Reciprocally,
2y§-3_o, or,

f-Q§-3,
is equal

to 2,053 ; VVoVcf is equal to 17,2049.

These two transformations are of continual use in the calculus

of decimal fractions.

86. CJianging the place of the point.— If, in a decimal frac-

tion, we advance the point one or more places to the right, we

multiply the number by 10, 100, 1000, &c. ; and if, on the con-

trary, we place it one or more places farther to the left, we divide

the number by 10, 100, 1000, &c.

For, let the number be 153-07295.

Suppose we advance the point three places to the right, which

gives 153072-95. The two numbers are now ^f^J2§§^, and

*^ Wo^^^- ^ow, the denominator of the second number is 1000

times smaller than that of the first, while the numerator is the

same. Then, the second fraction is 1000 times greater than the

first. On the contrary, remove the point two places towards the

left, it becomes 1-5307295, or, 1550129.5^ a fraction evidently

100 times smaller than the given one. We could establish the

same thing by reasoning thus :— By changing the place of the

point, the value of each figure becomes 10, 100, 1000, &c.,

times greater or smaller. Thus, in comparing 153072-95, with

153-07295, we see that the figure 3, which expresses in the

latter simple units, expresses now thousands; the figure 5, to the

left of the figure 3, which expressed tens, represents now tens of

thousands ; and the same with the other figures.

87. Zeros placed to the right of a decimal fraction.

By annexing any number lahatevcr of zeros to the right of a

decimal fraction, v-e do not change its value.
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Thus, 3-415 is equivalent to 3-4150, 3-41500 . . . . ; for these

numbers can be (85), put under the form,

3415 3 415 3 4_15 00
1000' Toooo> 100000? • • • •;

Now, the last two fractions are nothing more than the first,

with its two terms, multiplied by 10, 100, which (43), does not

change its value. Then, &c

Or, we may observe that zeros, placed to the right of decimal

figures already written, do not change their value ] and, as these

zeros have no value of themselves, the fraction remains always

the same. As the value of a figure in a decimal fraction depends

entirely on the number of places it is distant from the point, it

is obvious that we do alter this value by prefixing zeros between

the decimal point and the first decimal figure.

88. Reduction of several decimal fractions to the same deno-

minator.

The principle which has just been established, gives us a me-

thod of reducing several decimal fractions to the same number

of decimal fgures, without changing their value ; or, in other

terms, to the same denominator.

For example, the fractions

12-407
I

0-25
I

7-0456
|
23-4

are equal to 12-4070
|
0-2500

|
7-0456

|
23-4000.

They have 10000 for common denominator. These prelimi-

nary ideas being established, we pass to the four fundamental

operations upon decimal fractions.

Addition and Subtraction.

89. We perform the addition of decimal fractions in the same

manner as ice do that of entire vumhers, offer reducing them all

to the same denominator, and we pfoint off in the result as man?/

decimal places as there are in any one of the reduced numbers,

or the greatest number which any one of the given numbers con-

tains.
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A single example will suffice to illustrate and make plain this

rule.

Given, to add the numbers

32-4056
I

245-379
|
12-0476

|
9-38

|
and 459-2375.

32-4056

245-3790

12-0476

9-3800

459-2375

758-4497

121-2210 Verification.

We write, first, one zero to the right of the second number,

and two to the right of the fourth ; we then place the numbers

thus prepared, one under another, so that the units of the same

order correspond, and then make the addition in the ordinary

manner. We find for result, 7584497; or, separating the four

figures to the right, 758-4497; because the numbers added ex-

press units of the order of ten thousandths.

In practice, we can dispense with writing the zeros to the right

of the numbers, which contain fewer decimal places than the

others, provided we take care to arrange the units of the same

order in the same column.

Subtra-ction is 'performed in the same manner as in entire

numbers, after ice have reduced the decimals to the same deno-

minator (88).

Example.— G^'wi^w, to subtract 23-0784 from 62-09.

62 0900

23-0784

39-0116

62-0900 Verification.

We write two zeros to the right of the 62-09, which gives

62-0900; we then perform subtraction in the usual manner,
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taking care to separate four decimal figures to the right of the

result.

These methods are obviousl3' founded upon the fact that the

units of different orders, in decimal fractions, having the same

relations of magnitude, one to the other, as in entire numbers,

we have the same operations to be performed with the figures to

be carried as in entire numbers.

Multiplication.

90. In order to perform this operation, multipli/ the two given

numbers one hi/ the other, without regarding the comma or point

ivhich they contain; then separate hy a point, from the right of

the product thus ohtained, as many decimal figures as there are

in both factors.

Required, for example, to multiply 85-407 by 12-54. We find

first for the product of the two numbers, the points being disre-

garded, 44400378. Pointing ofi", then, on the right of the pro-

duct, 3 -f 2, or 5 figures, we obtain for the required product,

444-00378. In order to see the reason of this method, we re-

mark, that the two given numbers are equal to (160), jVqV^ ^^^

Wo"*- Whence we deduce the product by the rule in (57),

35407x1254 ,, , . , ., . , , .
, ,

-TKc^—TKcT ) t"^* IS to say, it IS necessary, 1st, to multiply the

two numbers, disregarding the point ; 2d, to divide this product

by 100000, or unity, followed by as many zeros as there are de-

cimal figures in the two factors, which is equivalent to separating

5 decimal figures on the right of the product. The method is

thus justified. Or, we may reason thus : by removing the point

from the multiplicand, we multiply it by 1000 ; since, at first, it

expresses thousandths, but after the multiplication, principally

units; then, the product is 1000 times too great. In the same

manner, by removing the point from the multiplier, we render it

100 times greater. Thus, by the suppression of both points, the

product is rendered 100000 times too great ; then, in order to

bring it back to its just value, it must be divided by 100000, or
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five figures must be pointed off for decimals on the right. The

reasoning would obviously be the same, whateve/be the number

of decimals in the two factors. It can happen that one of the

two numbers, only contains decimals. In this case, we point off,

on the right of the product, as many decimal figures as there are

in this number. The demonstration is too easy and obvious to

detain us.

We will find, according to these rules,

1st. The product of 4-057 by 9-503, is 38-553671.

2d. The product of 4-0015 by 29, is 116-0435.

3d. The product of 0-03054 by 0-023, is 0-00070242.

N. B. This last example deserves some attention. Suppress-

ing the point in the two factors, and performing the multiplica-

tion, we find for a product, 70242 ; but, as there are five decimals

in the multiplicand, and three in the multiplier, there must be

eight of them in a product which contains only five figures. In

order to remove the difficulty, we observe, that as the product

ought to express units of the 8th order of decimals, it suffices to

write, on the left of 70242, zeros in such number that, the point

being placed on the left of them, the last figure to the right shall

occupy the 8th decimal rank. We write three zeros then on the

left, besides one for the entire number, and obtain 0-00070242.

Division.

91. Two principal cases present themselves. Either the divi-

dend and divisor have the same number of decimals, or this

number is different. In the first case, suppress the point in the

dividend and in the divisor ; then operate upon the entire num-

bers which result from it. according to the ordinary ride of

division.

In the second, commence by reducing the two given numbers

to the same number of decimal places, or to the same denomina-

tor. The second case thus becomes the first.

First Case.—Required to divide 47-359 by 8-234. These two

numbers can be put under the forms (85), VoVu? IMJ- I^ividing
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them one by the other, according to rule for the division of frac-

47359 1000 47359x1000 47359
tions (59), we have

-looo"
^

8234
=

8234x1000 = ^234'

suppressing the factor, 1000, common to the two terms.

We see, then, that the quotient required is equal to that of

the two given numbers with the point removed ; and the rule

above is proved. We can also say, the two decimal fractions

having the same denominator, if we suppress the point, we mul-

tiply the two terms of the division by the same number, 1000;

then, the value of the quotient remains the same. The division

of 47359 by 8234, gives for the entire part of the quotient, 5,

and for remainder, 6189; thus the total quotient is, 5|^||.

92. Valuation of the quotient in decimals.—The vulgar frac-

tion, which accompanies the entire part of the quotient, having

terms pretty large, it is difficult to value it in its present state

;

moreover, it is natural to endeavour to express it in parts of the

same species as the given numbers. We arrive at this now by

the rule in (63)

:

4735918234

61890 5-7516395

42520

13500

~52660

~^5'60

"78580

~uuo
"3570"

After obtaining the entire part, 5, of the quotient, in order to

make the remainder, 6189, express tenths, we multiply it (63),

by 10 ; this we effect by placing a on its right ; then we divide

61890 by 8234; the quotient, 7, expresses then tenths; and we
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write it to the right of the figure 5, with a point before it. To
the right of the new remainder, 4252, we place a 0, in order to

convert it into hundredths ; we then divide 42520 by 8, which

gives the quotient, 5 ; this we place on the right of 7, and annex

another to the remainder, 1350 ; and so on, until we have ob-

tained the number of decimal places which the enunciation ques-

tion giving rise to the decision demands.

GrENERAL KuLE.— In order to express, in decimals, the quo-

tient of the division of two decimal numbers of the same denom

minator, or (which is the same thing after the suppression of the

point), of any two entire numhers ivhatever,

Commence hy determining the entire part of the quotient

^

(which can be 0), and lorite a point after it.

Annex a zero to the right of the remainder ; divide the num-

ber thus formed by the divisor ; then place the quotient on the

right of the point. Annex aO to the right of the new remainder,

and perform the division by the same divisor ; write the quotient

on the right of the two first. Continue thus until you have the

number of decimals requi7-ed.

93. Remark on these approximations.— In the preceding ex-

ample, we have carried the operation as far as the seventh deci-

mal figure, in order to establish some principles upon the different

degrees of approximation which can be obtained by the develop-

ment of a number into decimals.

By taking at first only the two first decimal figures, we have

5-75 for the value of the quotient, to within less than 0*01, since

the part neglected is obviously less than the unit of this order

of decimals. Again, as this neglected part is less than 0-002,

oy—XqjOT -gj^, it follows, that 5-75 expresses the value of the

quotient to within less than ^i^.

Now, if we take the three first decimal figures, we have 5*751

for the value of the quotient, to ivithin less than 0*001, since the

part which we neglect, 0*00063 .... is less than 0*001. But

here we must make an important observation. As the figure 6
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exceeds 5, it follows that 0-0006 exceeds 0-0005, or a Jialfunit

of the order tJiousandths ; then, by taking 5-752, instead of 5-751,

for the value of the quotient, we commit an error in thus taking

more than the true value, less than is committed when we take

5-751 for this value; and we can say that 5*752 expresses the

quotient, not only to within less than 0-001, but to within less

than the half of O'OOl.

Generally, whenever the figure which follows that one at which

we wish to stop in the divisioUj is less than 5, tee preserve the

figure obfainedj and we then have the value of the quotient to

within less than a half unit of the denomination at which we

stop. If on the contrary, the figure which follows is equal or

greater than 5, it is best to increase hy one unit the last figure

obtained, in order to obtain a value nearer the quotient; the

error committed is an error of excess, but it is less than a half

unit of the order at which we stop the operation.

Thus, in the example above, we have successively for the quo-

tient of the proposed division, 5-752, too great by less than a

half thousandth ; 5-7516, too small by less than a half ten thou-

sandth; 5-75164, too great by less than a half hundred thou-

sandth; 5,751640, too great by less than a half millionth. "We

will add, that when we have arrived at any decimal figure what-

ever, in the operation performed, the last remainder obtained

shows whether the following figure of the quotient is greater or

less than 5, without necessarily calculating this figure.

If the remainder is less than half the divisor, the following

figure of the quotient will necessarily be less than 5.

If this remainder is equal to, or greater than the half of the

divisor, the next figure of the quotient will be equal to, or greater

than 5.

Thus, in the example which we have just discussed, the eighth

figure of the quotient must be less than 5 ; for, the remainder at

which we stopped, 3570, is obviously less than the half of the

divisor, 8234.
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We have here given the whole theory of approximations in

the valuation of fractional numbers in decimals.

94. Case Second.— This divides itself into two others :

Firstly,— The dividend contains fewer decimal figures than

the divisor. We write on the right of the dividend the number

of zeros necessary to reduce the two terms of the division to the

same number of decimal places ; and the question is solved by

Case First without farther modification.

For example :—Required, to divide 2-405 by 0-03497. Placing

two zeros to the right of the dividend, which gives 2-40500;

then, suppressing the comma in both numbers, we perform the

division of the two resulting numbers, 240500, and 3497, ac-

cording to the rules in (91 and 92). We find thus the value of

the quotient to within less than -0001, to be 68-7732.

Secondly,— IVie dividend has more decimal figures than the

divisor ; ive can then employ two methods.

1st. Required to divide 3*470456 by 1-027. If we suppress

the point in the divisor, thus rendering it 1000 times as great,

and if we advance the point in the dividend three places to the

right, rendering it thus also 1000 times as great as at first, the

quotient of the division of these two numbers resulting, will be

the same as that of the given numbers. The question is thus

reduced to dividing 3470456 by 1027.

3470-45611027

3894 13-379217

8135

"9466

~2230

1760

T3'30

"Hi
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After finding the entire part, 3, of tlie quotient, and the re-

mainder, 389, instead of placing, as in (92), a zero to the right

of this remainder, we bring down the figure 4, which expresses

tenths, and perform the division, obtaining for quotient, 3, which

we place on the right of the first, separating .them by a point;

we then bring down to the remainder, 813, the figure 5, which

expresses hundredths; and we continue thus, until we have

brought down all the decimal figures which are contained in the

dividend. When we reach the remainder, 223, we place a zero

on the right of it, and operate as in case first. We see that this

method consists in suppressing the point in the divisor, taking

care to remove it in the dividend as many places to the right as

there are decimals in the divisor; then, in operating upon the

resulting numbers, as in the first case, with this difi"erence, that

instead of annexing at first zeros to the right of the diff"erent re-

mainders, we commence by bringing down successively all the

decimal figures of the dividend.

2d. We take the same example, and commence by writing to

the right of the divisor three zeros ; that is to say, the number

of zeros necessary to reduce the two terms to the same number

of decimal places.

We have then to divide 3470456 by 1027000.

347056 1 1027(000

389456 1 3-379217

~81356

9466

2230

"1760

7330

lil

In order to determine the entire part of the quotient, we com-

mence by applying the. rule of (38), for the division of entire
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numbers, when the divisor is terminated by zeros, We obtain

thus the quotient, 3, and the remainder, 389456. Now, in order

to find the tenths figure, we remark, that instead of multiplying

the remainder by 10, (i. e.) placing a to ttie right of it, wc can

divide the divisor by 10 ', that is, suppress one on its right.

Performing then the division, we have 3 for quotient, expressing

tenths, and the remainder, 81356. In the same manner, instead

of putting a to the right of this remainder, we suppress a se-

cond on the right of the divisor, and divide 81356 by 10270

;

applying still, if we wish, the rule of (38). We obtain thus the

new quotient, 7, and the remainder, 9466.

Suppressing the last on the right of the divisor, we divide

9466 by 1027 ) this gives the quotient, 9, and the remainder, 223.

Setting out from this remainder, we follow the rule in (92), in

order' to obtain the remaining decimal figures. This second me-

thod is obviously less simple than the first; and we mention it,

because it gives us the opportunity of showing how to operate

when we have zeros to annex to the remainders of a division, of

which the divisor is terminated by one or more zeros.

95. Particular Cases.— When there are no decimal places in

one of the terms of the division— For example, we can have

51-47876 to be divided by 849, or 3145 to be divided by 23-479.

In the first of these examples, we would proceed according to

the first method indicated in (94), under the head secondly.

In the second, we suppress the point in the divisor, and annex

to the dividend as many zeros as there are decimals in the divi-

sor. This is the same thing as multiplying both terms by the

same number. These cases are too simple to demand farther de-

velopment.

Conversion op Vulgar Fractions into Decimals.

96. We have seen in (92) how we are led to convert a vulgar

fraction into a decimal. This operation forms an essential part

of the theory of the division of decimal fractions. But we will

make here an important observation, which shall serve us in the



DECIMAL FRACTIONS. 115

exposition of tlie properties of decimal fractions, whicli we have

to establish hereafter.

This observation consists in this, that instead of placing zeros

to the right of the different remainders which we obtain hy apply-

ing the rule of (92), we can place at once these zeros on the right

of the dividend, and perform the division of the resulting num-

ber by the divisor, taking care to place the point in the place to

which it belongs in the quotient.

In order to establish this second method of proceeding, we

take the example, \^, and write out both methods.

130 47 13000000 47

360 0-276595 360 0-276595

310 310

280 280

450 450

270 270

35 35

In the first method, after writing a zero in the quotient, to take

the place of the entire number, we annex a zero to the numera-

tor, 13, of the fraction, in order to obtain the tenths; we then

place another zero to the right of the remainder of this division,

in order to obtain hundredths, and so on, until the total number

of zesos thus successively brought down is six. In the second

method, we multiply the numerator 13 by 1000-000 first, and

then perform the division. It is obvious that the quotient thus

obtained difi'ers from that obtained by the first method of pro-

ceeding, in being 1000000 times greater, and that we reduce it

to its true value by dividing it by 1000000, or by pointing off

six decimal figures on the right.
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DECIMAL SYSTEM OF WEIGHTS, MEASimES, AND
COINS.

Having now discussed the four fundamental operations of

arithmetic in their application to decimal fractions, we can ap-

preciate the advantages which the calculus of decimal fractions

presents over that of vulgar fractions, and are prepared to judge

how important it is to establish a decimal system of weights,

coins, and measures. In the United States we have the decimal

system of coins in the Federal money. In France, the decimal

system of weights, coins, and measures, has, after many efforts,

been established, in spite of the obstacles occasioned by ignorance

and prejudice. We give these decimal systems, with a few ex-

amples, in order to illustrate their advantages over the ordinary

systems, with their irregular subdivisions.

97. The denominations of the currency of the United States

are Eagles, Dollars, Dimes, Cents, and Mills, (the last three

terms expressing their relative values to the dollar by their deri-

vation).

TABLE.

The Eagle is divided into 10 dollars.

The Dollar 10 dimes.

The Dime 10 cents.

The Cent 10 mills.

The dollar sign being ($), we would, for example, write 56

dollars, 57 cents, and 5 mills, simply $56-575. In order to make

the comparison, if we wished to write £15 10s. 6f7. in parts of a

pound, we would have to write £15 -f J
jj + j^^ of -^^. And in

order to express this decimally, we would have to reduce tlie

compound fraction to a simple one, and then the vulgar fractions

to decimals by last article.

French Coins.

The franc is the principal unit of the new French system of

coins, its divisions being the decime and renflme. The Napoleon
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contains 20 francs. The sou, or piece of 5 centimes, is still re-

tained, but all calculations are made with the franc and its deci-

mal divisions.

TABLE.

The Franc is divided into 10 decimes.

The Decime 10 centimes.

Thus, we would write 545 francs, 8 decimes, (16 sous), and 4

centimes, 545-84/r.

We will now explain the nomenclature of the French system

of weights and measures, to which the name metrical system has

been given, the metre being the principal unit.

98. The unit of length, to which we give the name metrej is

the ten millionth part of the distance from the pole to the equa-

tor, measured on the meridian of Paris. According to measure-

ments made and verified with the utmost precision, the metre^

valued in old French feet and inches, is equal to 3 feetj inches,

11-296 line, to within less than y^L- of a line, or equal to

39-3809171 of our inches.* In order to designate measures

smaller or larger than the metre, it is agreed upon to employ the

following prefixes, (taken from the Greek and Latin).

Myria, Kilo, Hecto, Deca, Bed, Centi, Milli, which signify ten

thousand, thousand, hundred, ten, tenth of, hundredth of, thou-

sandth of, (the multiples being indicated by the Greek prefix,

the submultiples by the Latin). These prefixes are placed before

the word metre ; and the following table is formed. For conve-

nience of comparison, we convert the divisions and subdivisions

into parts of our inch.

* This measurement of the arc of the meridian was made under the

auspices of Arago and Biot. Several degrees, measured with great accu-

racy, served as a basis for the calculation of the length of the whole

meridian.
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10,000 metres = 393809-171 inches.

1000 metres = 39380-9171 " •

100 metres = 3938-09171 "

10 metres = 393-809171 "

principal unit = 39-3809171 "

-^\ of a metre = 3-93809171 "

yi^ of a metre = 0-393809171 "

-j-o^^j^
of a metre = 0-0393809171 "

N. B. The myriametre, and the Mlometrey are the itinerary

measures at present adopted in France. The myriametre is 6-22

miles.

Measures of Superficies; or. Square Measure.

99. The natural unit of surface is the square metre; that is, a

square which has a metre for its side. The decimetre squared,

or the square which has a decimetre for its side, is jj^ of the

metre squared; the square centimetre is j^j^^^, and so on, for

the rest. The square decametre is equal to 100 square metres.

This measure we take for the principal unit in all field measures;

and this unit is called are. The multiples and subdivisions of

the are are also designated by the aid of the prefixes, myria,

hectOj deci, centi .... Thus,

The Myriare = 10,000 ares=
Kilare = 1000 ares

Hectare = 100 «

Decare = 10 "

Are = the principal unit = 100 sq. ms. = 119-665 sq. yds. = ^
acre, about.

Declare — ^^ of an are.

Centiare = -j^^ of an are.

Milliare = jj^^-q of an are.
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N. B. The myriarej the hectare, are, and centiare, are the only

measures used. The centiare is the square metre."^

Measures of Volume.

100. The unit of volume is the cuhic metre ; that is, a cube,

(solid, of the form of a die), which has a metre for its side. The

multiples and submultiples of the cubic metre have as yet re-

ceived no particular names. The 1000th of the cubic metre is

called the cubic decimetre, because it is a cube with a decimetre

for its side, &c., for the cubic centimetre .... When the mea-

sures of volume are applied to wood for burning, or to materials

of building, the principal unit or cubic metre is called stere. We
then have the decastere, or measure of ten steres. The stere =
35 "375 cuhic feet.

Measures of Capacity, both Dry and Liquid.

101. The unit of capacity is the cuhic decimetre, which is

called litre.

As to the decimal multiples and submultiples, we give those

which are chiefly used.

Hectolitre..., = 100 litres.

Decalitre = .10 litres. [cub. in.

Litre = principal unit = 1-057 U. S. qts. = 61.074

Decilitre = t o ^^ ^ ^^t^Q-

Centilitre = jj^ of a litre.

Weights.

102. The unit of weight is the weight of a cuhic centimetre

of distilled water, at the temperature of maximum density, viz.,

39-5° Fahrenheit. The name given to this unit \b gramme. The
gramme is equal to 0-002204737 pounds avoirdupois.

* A partial decimal square measure has been introduced among sur-

veyors in the United States. The surveyor's chain, 66 feet in length, is

divided into 100 equal links ; and we have

10,000 square links = 1 sq. chain.

10 square chains = 1 acre.
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TABLE.
lbs.

The Myriagramme is =10,000 grammes= 22-04737

Kilogramme = 1000 grammes= 2-204737

Hectogramme = 100 grammes= 0-2204737

Decagramme = 10 grammes= 02204737

Gramme = principal unit= 1 002204737

Decigramme = -j-'^ of a gramme= 0-0002204737

Centigramme = j-ioOfagramme= 0-00002204737

Milligramme = ^J^, of a gra. =0-000002204737

N. B. The half kilogramme is about equal to the old French

pound, nearly equal to our pound avoirdupois.

103. Such is the nomenclature of the measures which compose

the metrical system. We can now judge of the advantages which

this system possesses over the ordinary measures.

1st. It is uniform and simple, inasmuch as its principal units

and their subdivisions follow the law of the decimal system of

numeration.

2d. It is fixed, invariable, and susceptible of being adopted in

all countries, since it is equally adapted to any climate or lati-

tude.

All these measures have for their base one primitive measure,

the metre, which is taken from the dimensions of the earth

itself.

We will dwell but little upon the application of the four fun-

damental operations of arithmetic to the decimal system of weights

and measures, since every collection of principal units and their

subdivisions, according to the nomenclature, can be expressed by

a decimal fraction ; and, therefore, these operations become opera-

tions upon decimal fractions, considered as abstract numbers. For

these last operations we have already established fixed rules.

Nevertheless, we will propose some questions in multiplication

and division, because they will afibrd opportunity for some im-

portant remarks upon approximate calculations.
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Examples under the different tables illustrating the above.

1st.— 56 kilometres, 25 decametres, 5 metres, and 9 milli-

metres, are written, 56255-009 metres.

2d.— 25 hectares, 4 ares, and 6 centiares, are written 2504-06

ares.

3d.— 34 hectolitres, and 6 centilitres, are written 340-06 litres,

4th.— 54 myriagrammes, 4 decagrammes, 7 decigrammes, and

3 milligrammes, are written 540040-703 grammes

Multiplication.

104. Question first.— Required, the price of 35 metres, 429

millimetres of a certain stuff, one metre of which costs $19 and

76 cents.

Here, if we multiply 35-429 w. by $19-76, we will obtain a

product which, expressed in dollars, cents, and mills, will be the

price required. The abstract product of these numbers (93), is

700-07704; then, $700-07, or, more exactly, $700-08 is the

price of 35-429 m. Sometimes the fraction of the metre is ex-

pressed by a vulgar fraction. In this case, the operation can be

performed in two ways.

Question second.— What is the price of 23| m. of a piece of

stuff, at $8-25 cts. per metre ?

1st. The reduction of | to decimals, gives 0-75; the question

is then reduced to multiplying 8-25 by 23-75, which gives

195-9375; then, $195-94 c^s. is the price of the 23| metres, to

within less than ^ cent (93).

2d. We could also operate as follows

:

8-25

23|

24-75

1650

189-75

i = 4-125

\ = 2-0625

195-9375

11
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In this operation, after forming the product of ^he two entire

parts, we have added the two partial products, and placed the

point where it properly belongs,, in order to avoid all error.in the

final result. We have then multiplied 8-25 by | (A + |) by

taking first the half of 8-25, which gives 4-125; then the half

of this half, which gives 2-0625. Now, taking the sum, we get

195-8375, as by the first method.

This last method of proceeding is preferable, when the vulgar

fraction cannot be converted into a limited number of decimal

figures.

Third Question.— To find the price of 89j^ metres, supposing

one metre to cost $47*19.

1st operation, 4719

424-71
3775-2

4199-91

= 23-595

= 11-7975
= 7-8650

42431675

Then, 89{^ metres cost M243-17, to within less than one cent.

Otherwise, commencing by converting i^ into decimals, we

find (>-91666 . . . .; and we must multiply 89-916666 .... by

47-19.

89-91

47-19

89-916
47-19

89-9166

4719

80919
8991

62937
35964

809244
89916

629412
359664

8092494
899166

6294162
3596664

4242-8529 424313604 4243164354

This table gives three distinct operations. 1st, with two de-

cimal figures of the multiplicand; 2d, with three; 3d, with four;
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and we see it is the last only wliich gives the approximation to

within less than one cejit.

The difficulty here is to know how many of the decimal figures

of the multiplicand we must take, in order to be assured that we

have the degree of approximation required by the nature of the

question ; while by the first method we obtain a complete result,

of which we can, according to choice, neglect more or less of the

decimal figures.

N. B. We could also reduce 89|-J to a single fraction ; then

multiply 47 '19 by this fraction; an operation longer than the

first method which we have used.

Division.

105. Question Fourth.—A piece of land containing 23 hec-

tares, 9 aresj 25 centiares, (23 A., 0925 c), loas bought for

$83,719-25. Required the value of the hectare?

We must here divide 83719-25 by 23-0925; and the quotient,

valued in dollars and cents, will represent the price per hectare.

We obtain, by simple division of decimals, $3625-38.

Question Fifth.— 28^| kihgrammes, of a certain material,

cost $519-35. What is the price per kilogramme f

Here we may use two methods. 1st, Reduce 28^| (o a single

fractional number, giving ^^^^ Then multiply 519-35 by ^J,

inverted, (Art. -59); we thus find for result, 18-038.

2d. We convert ^| to decimals, which gives 0-79166 . . . .;

then we divide 519-35 by 28-79, taking only two decimal places

of the divisor; we obtain thus, 18-039. Then, $18-04 is the

price per kilogramme of the stufi".

These examples suffice to show how we must proceed in the

multiplication and division of denominate numbers of the decimal

systems, and to show how much simpler these operations are than

in the ordinary systems of compound numbers.
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We will add here, as belonging properly to tlic preceding

theories, some notions upon the different divisions of the circle

and thermometer.

106. 0/ the two divisions of the Circle.— The circumference

of a circle is defined in geometry a recutiant line, all the points

of which are equally distant from a point within, called the centre.

In all the scientific works in this country, the circumference is

divided into 360 equal parts, called degrees (°) ; each degree into

60 equal parts, called miimte.s ('); each minute into 60 equal

parts, called seconds ("). This is called the sexagesimal division.

When the French reformed their system of weights and measures,

they adopted also a centesimal division of the circumference of

the circle, the use of which is becoming very general among the

scientific men of Europe. In this new centesimal system, the

circumference is divided into 400 equal parts, called degrees (°)

;

each degree into 100 equal parts, called minutes (') ,' each minute

into 100 parts, called seconds ("); each second into 100 equal

parts, called thirds ('''), &c.

Example of Sexagesimal Division. — 45 degrees, 38 minutes,

25 seconds, are written 45° 38' 25".

Example of Centesimal Division.— 28 degrees, 56 minutes,

and 23 seconds, are written 28-5623°, in the decimal form. In

order to reduce the divisions of the sexagesimal system to a com-

pound number of the centesimal, we observe that the quarter of

the circumference, called a quadrant, is in one system 90°, and

the other 100°. Then, 1° sexagesimal = ^-^^^ or y> of a degree

centesimal, and vice versa; 1° centesimal = f^ of a degree sexa-

gesimal.

We are thus led to the two following rules

:

1st. To convert a compound number sexagesimal to a com-

pound centesimal. Reduce, first, to a fractional number of de-

grees (JQ')] then multiply this number by ^-^j and convert the

result into decimals. The entire part will express the centesimal

degrees; the decimal part, divided into periods of two figures

each, the minutes, seconds, &c.

2d. Reciprocally, to convert a compound centesimal number
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J

into a compound sexagesimal. Subtract from the yiccn number

,

expressed in decimal form^ j'^ of this number, (o?- simpli/ take

y^Q of if). The entire part of the result will represent the num-

ber of sexagesimal degrees. The decimal part we convert into

minutes and seconds by the known rules for converting fractions

of a higher denomination into units of a lower.

Examples.— 1st. Convert 34° 69' 17" sexagesimal, into de-

grees, minutes, and seconds, centesimal.— 34° 59' 17", converted

to seconds, give 125957", or
^*§|J^'''

of a degree; this, multi-

plied by Y? g^v^s ^lilB^- Finally, the division of 125957 by

3240, gives 38 -875617 or 38° 87' 56" 17'" centesimal.

Reciprocally, 2d.— To convert 38° -875617 centesimal, into

degrees, minutes, and seconds, sexagesimal.

38-8756170

-j-V
3-8875617

34-9880553

60

59-283318

60

16 99908 or, 34° 69' 17".

Op the Principal Divisions of the Thermometer.

107. The thermometers mostly used on the continent of Eu-

rope are, the thermometer of Reaumur, and the Centigrade. In

England and the United States, the use of Fahrenheit's thermo-

meter is almost universal. These all differ in their scales of sub-

division only. In Reaumur's, the interval between the freezing

and boiling points of water is divided into 80 equal parts, called

degrees of Reaumur; in the Centigrade, this same interval is

divided into 100 parts, called centesimal degrees. It follows, that

each degree of Reaumur's is equal to "^^^^ or |, of the Centigrade

degree; and, reciprocally, each Centigrade degree is equal to |
of the degree of Reaumur. Moreover, the fractions of the de-

gree are expressed generally in both by decimal fractions. Thus,

it is a very simple matter to transform one into the other.

11*
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1st. In order to convert a decimal number of de2;rees of R&iu*

mur into Centigrade degrees, we add to the number one-fourth

of itself. The result of the addition is the number sought.

2d. In order to convert a decimal, number of centesimal de-

grees into degrees of Reaumur, subtract from the given number

one-fifth of itself, and you have the number sought.

Thus, for example

:

39°-4716 R. == 39-4716 + 9-8679 = 49°-3395 0.

Reciprocally,

49°-3395 C- = 49-3395— 98679 = 39°-4716 C.

In Fahrenheit's thermometer, the freezing point of water is

32°, instead of 0°, and the interval between that and the boiling

point (212°) is 180°. Then, the degree of Fahrenheit is }§§
= ig, or i of the degree Centigrade; and, reciprocally, the de-

gree Centigrade is |, or |§, of the degree of Fahrenheit. In the

actual reduction from one of these scales to the other, we must

always keep account of the different start point, both for negative

and positive temperatures. Thus,

1st. To convert a decimal number of degrees Fahrenheit (-f

)

into centesimal degrees, we must first subtract 32° ; then remove

the decimal point one place farther to the right, and divide by

18, (or multiply by 5 and divide by 9).

2d. To convert a decimal number of degrees Centigrade into

degrees of Fahrenheit, remove the decimal point one place to the

left, and multiply by 18, (or multiply by 9, and divide by 5)

;

then add 32° to the result.

Example 1st. To convert 56° -259 Fahrenheit into Centigrade

degrees.

56°-259—32°=24°-259....24°-259xig=24_2^59=i3o.477c,

2d. To convert 13°-48 C. to degrees Fahrenheit.

13-48 X 18=1-348 X 18=24-259 .... 24-259-f32°= 56°-259 F.
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The rules for the conversion of the (minus) degrees, and

also for conversion of Fahrenheit into Reaumur, are too obvious

to discuss them farther.

108. General Conclusion.— This first part of our work

includes all which constitutes elementary arithmetic, the princi-

pal object of which is the exposition and development of the

methods to be followed, in order to perform upon numbers all

possible operations. These operations are to the number of four

fundamental ones, addition, suhtraction, multiplication, and

division. All the others, such as the reduction of fractions to

the same denominator, to their simplest form, the conversion of

a vulgar fraction into a decimal, &c., are nothing more than com-

binations of those which we have just given.

There are two other species of operation, or rather two parti-

cular cases of the last two fundamental operations, of which we
have not spoken , because, in order to be developed in a complete

manner, they require some knowledge of algebra. These are the

formation of powers, and the extraction of roots of numbers.

The powers of a number are the products which arise from the

continued multiplication of a number by itself. Thus, 4x4x4
X 4 X 4 = the 5th power of 4. The formation of powers is evi-

dently then a particular case of multiplication. The roots of a

number are those numbers whose continued products, each by

itself, will produce the given number. Then, the extraction of

roots proposes the solution of the problem— Given a mimher, to

find the tioo equal factors which form it, or the three equal

factors, &c. ; evidently a particular case of division. We will

not discuss these, because they are fully treated in all of the good

text-books on algebra.

In the next chapter, we propose to consider numbers in a

general manner, independently of every system of numeration,

and to develop the properties belonging to any given system.

This will be in some sort Arithmetic Generalized.



SECOND PART.

CHAPTER V.

GENERAL Pl^OPEETIES OF NUMBERS.

109. Introduction.— Before going farther into tlie science

of numbers, and in order to investigate their properties with

more facility, we must borrow from algebra some of its materials,

such as letters and signs (some of which we have used already),

by the aid of which we indicate, in a general and abridged man-

ner, the operations and the reasoning which the resolution of a

question requires.

1st. The letters, which we employ instead of iSgures, in order

to represent numbers. Their use affords at once a mode of writing,

more concise and more general than that of figures.

2d. The sign + plus (already used), to indicate the addition

of two or more numbers.

3d. The sign minus— (already used), to indicate the subtrac-

tion of one number from another.

4th. The sign of multiplication is X , or a point, which we

place between the two numbers, read multiplied hy. Thus, aXh,
or, a. hj mean a multiplied by h.

N. B. We have already used both these signs. Now, when

the numbers, the multiplication of which we wish to indicate,

(128)
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are expressed by letters, then this multiplication will be indicated

also by simply writing one of the letters after the other, with no

sign between ; thus, ah signifies a multiplied by h. But this

method cannot be employed when the numbers are indicated by

figures ; for, if we wrote the product of 5 by 6, 56, this notation

would be confounded with fifty-six. In the case of figures, then,

X , or some such sign between the numbers, is necessary. An-

other sign of multiplication is the parenthesis
( ).

5th. The sign of division, either a bar (—^), as already used in

vulgar fractions, or a bar with two points, thus (-^-), or simply

two points. Thus, \4 == 24 -- 6 = 24 : 6 = 24 divided by 6

6th. The Coefficient is the sign which we employ, when a

number denoted by a letter is to be added to itself several times.

Thus, instead of writing a-\-a-\-a-\-a-\-a, which represents

the number a added to itself four times, we write 5a. We say,

then, the coefficient is the number written on the left of another

numher, denoted hy one or more letters, to show how many times

this number is taken, or the number of times plus one it is added

to itself.

7th. The exponent is the sign which we employ, when a num-

ber denoted by a letter is multiplied several times by itself.

Thus, instead of writing aXaXaXaxa, or aaaaa, we
write simply a^ , which signifies that a is multiplied 4 times by
itself.

The exponent is then a number written to the right, and a little

above another number, or letter expressing a number, showing the

number of times plus one that this number or representative letter

is multiplied by itself

8th. The sign which expresses that two numbers are equal,

already used (=), read is equal to, or simply equals.

The axioms applied in the operati<.ns on equations we annex
to this definition, viz : If equals be added to, subtracted from,

multiplied, or divided by equals, the results will be equal.

These preliminaries being established, we will take up again

some of the subjects of which we have treated in the first part,

in order to investigate them more thoroughly. We will arrive
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thus at new properties, and at means of simplifying -or modifying

the methods in the different operations of arithmetic.

[In order to give some idea of the use of these different signs,

and of the simplicity of the algebraic language, we will make a

few applications.

Let us suppose, first, that we wish to express that a number,

represented by a, is to be multiplied 3 times by itself; that the

product thus resulting is to be multiplied 3 times successively by

h; and, finally, the new product is to be multiplied twice by c;

we will simply- write a*iV.

If we wish to express that it is necessary to add this last result

6 times to itself, or multiply it by 7, we write Ta^tV.

In the same manner, 6a®6* is the abridged expression of 6

times the product of the 5th power of a by the second power

of h.

3a—55 is the abridged expression of the difference between

the triple of a and the quintuple of h.

'±0^—3a6-j-45* is the abridged expression of the double of the

square of a, diminished by the triple product of a and i, and

augmented by four times the square of h.

Let us now see how we can effect, upon quantities expressed

algebraically, the fundamental operations of arithmetic. We will

limit ourselves to the most simple cases—those to which we will

have to refer in the latter part of this treatise.

Addition.— In order to add two numbers, a and 5, we write

simply a-f 6. In the same manner, a-\-h-\-c indicates the addi-

tion of the numbers a^ h, c : that results from the notation we

have established. In the same manner, a— 6 and c -J- r7—/,

added together, form the single quantity, a— h-\-c -\- d—f. If

we had to add a— h and h— r, we would write a— h -{-h— c.

But as, on the one hand, h is added, and on the other subtracted,

it follows that these two operations balance each other, and the

expression is reduced to a— c.
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Subtraction.— In order to subtract h from a, we write a— h.

In the same manner, if we wish to subtract c from a— 6, we

write a— h— c.

Let it be required to subtract the expression e— d from the

expression a— h. We can first indicate the subtraction thus:

a— h— (c— c7). But if we wish to reduce the result to a single

expression, we must reason as follows

:

If we had to subtract c alone from a— 6, the result would be

a— h— c. Now, as it is not o, but c diminished by J, which is

to be subtracted, the result, a— h— c, is too small by the num-

ber of units in d ; thus, the result will be brought back to its

just value by adding d to a— h— c, or writing a— h— c-{-d.

That is to say, in order to subtract one algebraic expression

from another, we must write the one to be subtracted with the

signs of all its terms changed, after the other ; thus forming one

single expression.

We find by this rule, and analogous reasoning,

3a— (26— 3c) = 3a— 25 + 3c.

5a— 46— (6c/—/-f ^7) = 5a—46— 6c7 +f—g.

Multiplication.— Eequired to multiply a* by h^.

We write a^ x 6', or simply a^J?.

But if we have a^ to be multiplied by a', we observe that the

number a, being 5 times a factor in the multiplicand, and 3 times

a factor in the multiplier, ought to be 5+ 3, or 8 times a factor in

the product. Thus, we have a^Xa^^=a^; that is to say, when

the same letter enters into both factors of the multiplication, we

lorite it once in the producty and give it for exponent the sum of

its exponents in the two factors.

Required, now, to multiply a — 6 by c.

We can first indicate the product in this manner (a— h) c.

But, if wc wish actually to perform the operation, we remark,

that to multiply a— 6 by c (27), is to multiply c by a— h ; that

is, to take c a— b times, or as many times as there are units in

a, diminished by the units in b. If, then, we multiply first c by

a, which gives ac or ca, the product is too great by the product
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of c by h, or he. Thus, we must subtract he from ac, and we
obtain ac— he for the required product, (a— h)c = ac— he.

Required, again, to multiply a— 5 by c— d.

The product can first be indicated thus : (a— h) (c— d).

But, in order to obtain a single expression, we commence by

multiplying a— h hj c, which gives ac— he; and we observe,

then, that it is not by c alone that we have to multiply a— 6,

but by c diminished by d.

Thus, the product ae— 6c is too large by the product of a— b

by a; that is, by ad— hd. Then, in order to reduce the pro-

duct to its just value, we must subtract ad— 5c? from ac— be;

which gives, by the rule of subtraction, ac— he— ad -\- hd.

Examining this product, we deduce the following rule

:

In order to effect the multiplication of two algebraic expressionSj.

multiply successively each term of the multiplicand by each term,

of the multiplier ; observing, that if two terms of the multiplicand

and multiplier are affected with the same sign, their product is

affected with the sign -j- (^plus") ; hut if they are affected with

different signs, their product is affected loith the sign — (minus).

Division.— We will consider only a single case of this opera-

tion, in which the two terms of the division contain the same

letters.

Required to divide a? by a^.

We can first indicate the quotient in this manner :
g, or

CT^-f- a'. But a' is the product of which a^ and the quotient are

the two factors ; hence, the exponent, 7, of the dividend, ought

to be equal to the sum of the exponent of the factor known, 3,

and of the unknown exponent of the quotient; then, recipro-

cally, this last is equal to the difference between the exponent of

the dividend and the exponent of the divisor ; that is, to 7— 3

or 4.

Thus, -r,= a\ -j-==ab . . . . &c.
'

a-* a^b

Such are the general notions of algebra, of which we will have

to make use in the fifth and following chapters.]



GENERAL PROPERTIES OF NUMBERS. 133

Theory op Different Systems op Numeration.

110. We have seen (Art. 5), how, by the aid of ten characters

or figures we can represent all numbers, setting out with the

conventional principle, jthat every figure placed on the left of

another, expresses units ten times greater than those of the first

figure. We now propose to show that we can write all numbers

with more or less than ten characters, provided we do not use less

than two, (zero, 0, being always one of these characters).

We call, in general, the number of figures employed, the base

of the system. The system in which two figures are used, viz

:

(10), is the binary system, and 2 is the base. The ternary

system, of which 3 is the base, makes use of 8 figures, 1, 2, ;

the quaternary has four figures, 1, 2, 3, 0; the quinary, five,

1, 2,3, 4, 0; &c., &c.

The base may be greater than ten ; we must then have recourse

to additional characters. Thus, in the system of which twelve

is the base, the duodenary or dvodecimal, we will have to use

two new signs, a and jS, to express ten and eleven numbers less

than the base.

In every system analogous to the decimal system, the conven-

tional principle holds that every figure placed on the left of an-

otlierj expresses units as many times greater than those of the

first figure as there are units in the base of the system. Thus, in

the binary system, each figure acquires a value twofold greater

for each place that it is removed to the left. In the ternary

system, they increase in a threefold ratio ; and, in general, in a

system of which b is the base, a figure goes on increasing in a

b-fold proportion, as it is removed one or more places to the left.

When a number is written in a system whose base is b, the

first figure on the right . expresses the units of the first order

;

the figure immediately on its left the units of the second order

j

the next figure on the left the units of the third order ; and so

on. It requires b units of the first order to make one of the

second ; b units of the second to form one of the third, &c.
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111. We pass, now, to the manner of expressing in figures

any entire number, whatever be the system which we adopt. In

order to fix our ideas, we will consider the septenary system,

which makes use of the seven characters, 1, 2, 3, 4, 5, 6, 0.

Adding unity to six, we obtain seven, or the unit of the second

order; which, according to the principle enunciated above, can

be expressed by 10 ; since the 0, having no value of itself, makes

the figure 1 at its left express one unit of the second order, or

seven simple units. Placing, successively, all the figures of the

system in the first and second place, we will evidently form all

the consecutive numbers comprised between 10 = seven and the

number expressed by 66.

For example, 11, 12, 13, 14, 15, 16, represent the numbers

eight, nine, ten, eleven, twelve, thirteen, 20 = fourteen, 21 =
fifteen, &c.

After reaching the number 66, if we add to it a new unit,

there will result 6 units of the second order, plus seven units of

the first order; that is to say, seven units of the second order,

or a single one of the third order, which can be expressed by

100. Placing, successively, in the first, second, and third places,

the difi'erent figures of the system, we will form all the consecu-

tive numbers comprised between 100 and the number expressed

by 666. Reasoning on this last number, as upon 66, we shall

arrive at the unit of the fourth order, which is expressed by

1000 ', then we obtain, successively, all the consecutive numbers

comprised between 1000 and the number expressed by 6666;

and so on, to infinity; whence we see that all possible entire

numbers can be written in this system. The same reasoning

applies to any other system. Whatever system be adopted, the

units of the different orders are respectively represented by 1, 10,

100, 1000, 10000, &c., as in the decimal system.

112. N. B. We have said (110), that the character was in-

dispensable in every system analogous to the decimal system;

that is to say, in a system where the relative value of a figure

depends upon the place which it occupies on the left of several
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others. To speak rigorously, we could do without it; but the

•system would be less regular, as we shall see.

Let it be proposed, for example, to establish the ternary sys-

tem, using the three significant figures, 1, 2, 3. The first three

numbers are expressed by these figures. In order to represent

four,jjivej and six, it would suffice to write 11, 12, 13. In order

to express seven, eighty nine, ten, eleven, twelve, we would write

21 22 23 31 32 33

In the same manner,

111 112 113 121 122 123

would express

thirteen, fourteen, fifteen, sixteen, seventeen, eighteen.

It is not necessary to go farther, in order to see the inconve-

niences of this system. Its principal fault consists in this, that

units of the same order are expressed in a different manner.

Thus, in 13 and 23, the figure 3 expresses a unit of the second

order, the same with the figures 1 and 2 on its left. In 123,

23 express nine, or units of the third order, the same with the

figure 1 to the left of them. (The same process might be applied

to the decimal system as is here applied to the ternary, by using

a single character for ten, and dropping the 0.)

In making use of 0, it suffices to determine the number of

units of different orders which enter into the proposed number,

and to write, one after the other, the figures which express these

units.

113. The perfect adaptation of the nomenclature of numbers,

and the manner of writing them in figures, in the decimal system,

permits us to write them easily from dictation in ordinary lan-

guage. The same thing would be true of every system of

numeration which had a special nomenclature appropriate to the

system ; in other words, a spoken numeration corresponding to

its written one. But other systems do not present this immediate
* connexion with the nomenclature now in use.
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Let it be proposed, for example, to express the number, three

hundred and sixtj/'inne, referred to tlie decimal system in the

septenary system. It is difficult to see, d priori, which are the

figures proper to express units of the first, second, third ....

order which it contains.

Now, since this number, written in figures in the decimal sys-

tem, is three, six, nine, it follows that the question above depends

on the following, which is much more general :

—

A number being

enunciated in ordinary language, or icritten in the decimal system,

required to express this same number in the system whose base

is b.

In order to resolve it, we remark, that since it takes b units

of the first order to make one unit of the second order, as many

times as the proposed number contains the number b, so many

units of the second order of the system, whose base is b, will it

contain ; that is to say, that if we divide this number by b, the

quotient will express units of the second order, and the remain-

der, which will necessarily be less than b, will express the units

of the first order of the number written in the system whose

base is b.

In the same manner, since b units of the second order in the

system whose base is b, form one unit of the third order in the

same system, if we divide the quotient which expresses units of

the second order by b, the new quotient which we thus obtain

shall express units of the third order, and the remainder, always

less than b, shall represent the units of the second order written

in the system whose base is b, and so on for the rest.

Whence we see, that in order to pass from the decimal system

to the system whose base is b, we must, 1st, divide the given

number by the base of the new system written in the decimal sys-

tem, and write the remainder of this division apart, as expressing

the units of the first order in the new system ; 2d, divide the quo-

tient obtained by the same base, and write tJie second remainder

to the left of the first, as expressing the units of the second order ;

3d, divide the second quotient by the same base, and write tJie

third remainder on the left of the two preceding, because it ex-
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presses units of the third order ; continue this series of operations

until we arrive at a quotient smaller than the base of the new

system ; this last quotient expresses the units of the highest order,

and is written on the left of all the remainders successively ob-

tained.

Let us apply this rule to the number, 369, which we wish to

express in the septenary system.

7
I

369

7
I

52 (5 1st rem.

7 1" (3 2d rem.

1 (0 3d rem. •
Dividing 369 by 7, we obtain for quotient, 52, with remain-

der, 5, which we write apart, in order to express the units of the

Jirst order in the new system.

Dividing 52 by 7, we find 7 for quotient, and 3 for remainder,

which we write to the left of 5, as it expresses units of the se-

cond order.

Dividing 7 by 7, we have 1 for quotient, and for remainder,

which indicates that there are no units of the third order; but

we write a to take the place.

Finally, as the quotient 1 is smaller than 7, it expresses the

units of the fourth order, and the number in the septenary sys-

tem is (1035).

On examining this operation, we shall find that we have ob-

tained the three hundred and forty threes, the forty nines, the

sevens, and the units, which the given number, 369, contains

Hence, we might also proceed by the following rule :

Find, by inspection, the highest denomination of the new sys-

tem which the given number contains; divide the given number

by the number expressing the highest order of units written in

the decimal system. Set the quotient apart, as expressing the

highest order of units of the required number in the new system.

Divide the remainder by the number expressing the value of the

'next lower order, and place the quotient on the right of the first

12*
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one to express the units of the next highest order-. Divide the

remainder hy the next lower
j
placing the quotient on the right of

the two preceding, &c., &c.

Thus, in the same example, 369 to be converted into its equi-

valent number in the septenary system. We see that three hun-

dred and forty-three is the highest order of unit of the septenary

system which it contains.

We divide by 343 ; the remainder, 26, 343)369 ("1

by 49 ; the remainder, by 7 : the last re 343

mainder, 5, being necessarily less than
4q\9fi7o

seven, the base of the system expresses

units. ^0 we write the quotients from 7)26(3

left to right, commencing with the first 5 j^gt rem.

obtained, and write the last remainder

on the right of the last quotient. We obtain, as before, (1035).

The first method given is, however, the best, especially for large

numbers.

We find, by this method, the number 5347 of the decimal

system, equal to (12343) of the system which has eight for its

base.

8
I

5347

1

1
668 (3 1st rem.

8
1
83 (4 2d rem.

8
1
10 (3 3d rem.

1 (2 4th rem. (12343)

Remarh.— It can happen that the base of the new system is

greater than ten, the base of the decimal system. In this case,

we proceed as follows :— Required, for example, to convert the

number 8423 of the decimal system into its equivalent number

in the duodenary system. The figures of this system are 1, 2,

3, 4, 5, 6, 7, 8, 9, a, j3, 0. (The two Greek letters, a and /3,

being employed to designate ten and eleven in the new system.)
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12
I

8423

12 |"701 (p 1st rem.

12
I

58 (5 2d rem.

4 (o 3d rem.

The base twelve being expressed (4a5i3) by 12 in the decimal

system, we divide 8423 by 12, which gives 701, and remainder,

/3 = 11, in the decimal system. We write this ^ apart, as ex-

pressing units of the first order. Likewise, in the third division,

we obtain for a remainder ten, which, in the new system, is ex-

pressed by a; we then write a to the left of the two figures

already found. We obtain thus (4a5/3) for the equivalent of

the given number in the new system.

114. Reciprocalli/j a number being written in a system whose

base is b, required to enunciate it in the spoken numeration of

the decimal system ; that is, to convert it into its equivalent in

that system.

In general, let ... . hgfdca be a number expressed in the

system of which b is the base; a, c, d,f, &c., expressing units

of the first, second, third .... order, (and not being an indicated

product), as in (4°, Art. 109). It results from the fundamental

principle established in (110), that the figure denoted by c, ex-

presses units b times as great as the same figure standing alone

would express; then, its relative value can be represented by

cxb, or simply by cb (109). In the same manner, the figure a

expresses units b times as great as those of the figure c : hence,

its relative value is equal to the product of d hy bxb or b^, and

can be expressed db^. We could show, in like manner, that/6^

g¥, hb^ .... are the relative values of the other figures. Then,

the given number is expressed by

a^cb-\-db^+/b^-}-gb'+hb'+

Giving to the base b and to the figures a, c, d, /, particular

values, we effect all the operations indicated in this expression,

and we shall obtain the number corresponding to the particular

data, converted into the decimal system.
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Required, for example, to convert the number 4867, written

in the system of eiyht figures, back into the decimal system.

This number can, according to the expression above, be placed

under the form

7 + 6x8-1-3x8^4x8'.

We have at once, then,

7 =7
6x8 =48
3x8' =192
4x8=^ = 2048

2295

Adding these numbers, we have 2295 for the value of (4867)

in the decimal system. We can verify the accuracy of this ope-

ration by the rule of (113).

8
I

2295

8
I

286 (7 1st rem.

Sjii" (6 2d rem.

~4
(3 3d rem. (4867).

And, reciprocally, this last operation can be verified by the

preceding one, which we will enumerate generally thus

:

Form, first, the different powers of the hase, h, written in the

decimal system; multiply then all the figures of the number,

written likewise in the decimal system, as a, c, d, f g, h, re-

spectively, hy 1, h, h^, h^, h*, V". Adding the partial products,

we shall have the number required.

Given, for example, the number (4a5)3) in the duodenary

system, to be converted into its equivalent in the decimal system.

Since a and |3, written in the decimal system, are 10 and 11 re-

spectively, this number can be placed under the form

11 + 5x12 + 10x122+4x12'.
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11 = 11

5x12 = 60

10x12^ =1440
4xl2» =6912

8423

Then, (4a5|3) equals 8423, written in the decimal system.

115. The two preceding rules lead to a third, more general,

which has for its object to convert any number from a system

whose base is 6, into its equivalent in a system whose base is c.

Convert the number front the system h to the decimal system^ hy

(114); then from the decimal system to tlie system c, by (113).

Required, for example, to convert the number (23104) of the

system whose base is 5, to its equivalent in the duodenary sys-

tem. We obtain, first, for this number, transformed into the

decimal system, 1654 ; then, for this last, transformed into the

duodenary system, ()35a). We can verify this operation by

making the transformations in an inverse order.

N. B. The above transformation from the quinary to the duo-

denai-y system, could be effected directly, without the intervention

of the decimal system, by performing all the operations required

in the quinary system ; the only difficulty of this mode of ope-

rating being the want of agreement between the written numera-

tion of this system and the spoken numeration, so universally

in use.

124. The methods of performing the four fundamental opera-

tions of arithmetic, upon numbers written in any system whatever,

do not differ from those which have been established for the

decimal system. We must only recollect the law which exists

between the units of different orders, in order to be able to con-

vert the units of any order into units of the order next higher

or next lower.

In order to familiarize beginners with the different systems of

numeration, we will propose an example of each of the four

operations in the duodenary system.
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1st. Required to add 3704a, i32956, 27i3a5, 48a/3..

We find for the sum of the simple units thirty-two ; 3704a

that is to say, 2 twelves and 8 units; we then write 8 132956

in the units column, and carry 2 to the column of units 27f3a5

of the second order. The sum of the units contained 48a/3

in this second column is thirty-one, or 2 units of the n- g^o

third order, and 7 of the second ; we write the 7, and

carry the 2 to the next column. Operating in the same manner

on the other columns, we obtain (I5a678) for result.

2d. Required to subtract from 5a0046

The number, 47a68p

121577

As we cannot subtract jS from 6, we borrow one unit of the

second order from the 4, and say, |3 from eighteen leave 7. Pass-

ing to the next subtraction, as we cannot subtract 8 from 3, we

borrow one unit from the first significant figure to the left. As

there are two zeros between, we say, this unit thus borrowed

equals twelve, or |3+ one of the next lower, which one equals J3 -f

one of the next lower, which one equals twelve of the same order

with the 3. We then Subtract 8 from fifteen, giving 7.

In the two following subtractions, we regard the zeros as re-

placed by |3, and continue the operation to the end.

3d. Required to multiply 3407a

by 5a68

228528

180360

294664

148332

177608828

We premise here a table of multiplication as far as the figure |3,

the highest figure of the system, after the manner of the table

of Pythagoras.



177608828 5a68

l^a08 •

3a082

3407a

4a968

0000
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This being premised, we multiply 3407a by 8, and say; 8

times a make eighty, or (68) of duodenary system ; we write the

8 and carry the 6. Then 8 times 7 make fifty-six, and 6 make

sixty-two, or (52) of the duodenary. We write the 2 and re-

serve 5 for the next column. Continiiinu; this operation, we

obtain for a partial product, 228528. As to the products of the

multiplicand by the other figures of the multiplier, the same

reasoning applies, and we use the same processes as in the deci-

mal system. Summing up the products, we obtain 177608828.

4th. Let us verify this operation by divi-

sion. We simply divide the product ob-

tained, by one of the factors. In order to

obtain the number of units of the highest

order in the quotient, we take the first five

figures on the left of the dividend, and

divide 17760 by 5a68. For, thus, we see

that 17 contains 5 three times, with a remainder. Multiplying the

divisor by 3, and subtracting the product from the first partial

dividend, we obtain for a remainder, l/3aO. ' We bring down 8

and divide l|3a08 by 5a68, obtaining 4 for quotient, and 3a0 for

remainder.

AVhen the following figure 8 is brought down, the new divi-

dend does not contain the divisor ; we then place in the quo-

tient and bring down 2, which gives 3a082 for the next partial

dividend. Proceeding in the .same manner with the rest, we

obtain 3407a for the required quotient.

We can now see how we can pass at once from the number

(23104) of the quinary system, to its equivalent in the duode-

nary (115). We must divide 23104 by 22, or twelve written in

the quinary system, and perform the division in that system, we
would thus obtain a remainder which would express the units of

the first order in i\\Q duodenary system, and a quotient which we

would divide again by 22, or twelve expressed in the quinary

system, in order to get the units of the second order, &c., &c.

117. General RemarJc.— The duodecimal system ofiers some
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advantages over the decimal, inasmucKas its base twelve coniBins

a greater number of factors than ten. For twelve is divisible by

2, ^, 4, 6 ; while the only factors of 10 are 2 and 5.

Nevertheless, we could not substitute the duodenary system, or

any other, for the decimal, without replacing the ancient nomen-

clature by a new one, which was more appropriate to the system

adopted, that is, which made the enunciation of written numbers

easier.

We shall perceive, moreover, that the greater part of the pro-

perties of numbers which have been discovered are true, what-

ever be the system of numeration which we adopt, and some,

which shall seem to belong to the decimal system in particular,

have their analogous properties in the other systems. The em-

ployment of the letters of the alphabet in order to represent

numbers, is well calculated to make the generality of these pro-

perties appear, as they can express numbers enunciated in any

system of numeration whatever.

Principles of Multiplication and Division. Divisi-

bility OF Numbers.

118. We have already demonstrated (25) and (26). 1st.

That to multiply a number hy the product of several factors, is

tlie same thinff as multiplying the number successively by each

one of the factors.

2d. That the product of two numbers is the same in whatever

order we effect their multiplication.

Though the reasoning were developed upon particular num-

bers, they are not the less rigorous on that account; and in

order to convince ourselves, it suffices to go through it again,

denoting the numbers by the letters a, h, c, &c.

We propose ta verify only the accuracy of the second of the

above propositions, whatever be the number of factors to be mul-

tiplied together. We commence by remarking, that if we had

to multiply a number N by 6, and then to multiply the product

obtained by r, it will amount to the same thing to multiply N first
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by c, and then the product by b. In other terms (8), in a mul-

tiplication of more than two factors, we can invert the order of

the last two multiplications without changing their productj or,

NxJxc = Nxcx &.*

For it results from the first principle above, that N X 6 X c =
N X 6c ; but in virtue of the second principle, we have he = ch ;

then, Nx J X c = N xc6, or, NxiXc= N x cx6. Q. E. D.

From this proposition, and the proposition that the product of

two numbers is the same in whatever order we take them, it is

easy to deduce the same proposition for three numbers.

Let a, h, c, be the numbers proposed.

.

We say that ahc = hac =s bca = cha = cab = acb.

For the second product is equal to the first, in virtue of pro-

position 2d ; the third is equal to the second, in virtue of pro-

position 3d ; the fourth is equal to the third, in virtue of 2d

;

the fifth is equal to the fourth, in virtue of the 3d ; finally, the

sixth is equal to the fifth, in virtue of 2d. Then all the pro-

ducts are equal. From this demonstration for three factors, and

from the incidental proposition (3), we deduce with the same

faculty the proposition for four factors.

Let a, 6, c, d, be the numbers proposed.

We say then, that

abed = bacd = bead := cbad = acbd = cabd

=: abdc =
= bcda =
= cadb =

Firstly, the six products of the first horizontal line are equal

to each other, in virtue of the proposition for three factors, since

they result from the multiplication of ahc, bac, &c., &c., by the

same number, d. The first product of the second line is equal

to the first of the first line by reason of (3); as to the other pro-

ducts of this line, we dispense with writing them ; they can be

* We here for convenience sake, shall give diflFerent significations to

N X ^ X c and N X ^c, regarding the last as the product performed of

b and c.

13
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found easily, keeping c in the last place in each ; they are all

eqnal to the first by the proposition for three factors. We could

thus proceed with the other two lines, applying alternately the

incidental proposition (3), and the proposition for three factors.

We thus prove the proposition for all possible products of a, h,

c, d, since we cannot form more than 6 products terminated by
the same letter. The same mode of demonstration can obviously

be easily extended to any number of factors;

119. The demonstration which we have given of the pre-

ceding principle, supposes that the numbers upon which we are

reasoning are entire numbers (Arts. 25 and 26) ; but if we re-

flect a little upon the rules established for the multiplication of

fractions, we perceive that the property is equally applicable to

fractional numbers. Moreover, this proposition completes the

demonstration of the method established for the reduction of

fractions to a common denominator given in the chapter on

fractions.

Divisihility of Numbers.

120. The property which certain numbers possess of being

exactly divisible by others, and the investigation of the divisors

of a number, form one of the most important theories of arith-

metic. This theory depends upon a series of principles, which

we proceed now to develop successively.

We will first repeat some preliminary definitions which we

have already given. We say that every entire number, which

divides exactly another entire number, is called z. factor, divisor

,

or suhmultiple of this number, and this last is called a multiple

of the first. Every entire number which has no other divisor

except itself and unity, is called an absolute prime number, or

simply a prime number. Two entire numbers are prime with

each other when they have no other common divisor besides

unity, which is a divisor of every number.

It follows from this, that a prime number which does not

exactly divide another number, is prime with the latter, as they

can have no common divisor greater than unity.
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121. First Principle.— Every number, P, which divides

exactly/ one of the factors of the product A X B, divides neces-

sarily the product ; or, what amounts to the same thing, every

entire number which divides another exactly, divides necessarily

the multiples of this number.

For, let Q be the quotient supposed exact of the division of

A by P; we have then A = P X Q, whence, multiplying both

sides by B, A X B = P X Q X IB = P X QB ; we see then that

P is a factor of the product AB.

122. Second Principle.—Every number which divides exactly

the product of two factors, and which is prime with one of them,

divides necessarily the other factor.

Let A X B be the given product, P the number which divides

this product exactly ; we say that if P is prime with A, it will

divide B.

For A and B being by hypothesis prime with each other, if

we apply to them the rule of the greatest common divisor, we

will be led to a remainder equal to 1 ; that is to say, denoting by

r, r'j r" , .... 1, the successive remainders, we will have the

series of numbers.

APr, /, r", ... 1, A being greater than P; or, PAr,

/, /',... 1, if P is greater than A, for the different terms of

the divisions to be performed. But, suppose that, before perform-

ing the operations, we commence by multiplying A and P by B,

there will result the new series, AxB, PxB, rxB, /xB
.... 1 X B. Now, all these terms are divisible by P, since P
is the common divisor of the two first terms. Then 1 X B, or B
is divisible by P. Q. E. D.

N. B. It is important to remark that the proposition is only

true when P is prime with one of the factors of the product.

For, if we have, for example, on the one hand 28 X 15, and on

the other 12, which is not prime with either of the two factors

of the product, the quotient of the division of (28 X 15), or 420

by 12, is exact and equal to 35, though 12 divides neither 28
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nor 15. It is obvious in tliis case, that the two factors contain

together all the prime factors which compose the divisor.

Thus we have

28 X 15 -^ 4x 7x3x 5 = (4x3)x 7x5.-=12x7x5=12x35

Consequence of Second Principle.—Any number whatevery P,

j)rime with all the factors except one of a product^ A X B X C
. . . ., can only divide the product^ when it divides exactly the

remaining factor.

This is too obvious for discussion.

123. Third Principle. — Every prime number, P, which

divides Exactly the product of two factors, divides one of them

necessarily.

For, suppose that P does not divide A, it is necessarily prime

with A (120); then it must divide B (122).

From this result the following consequences.

124. 1st. If a prime number, P, divides the product A X B
X C X of any number offactors, it divides one of the

factors at least.

2d. Every prime number which divides the powers, K^, A^,

A*, &G., of any number. A, divides A itself. For A^, A'', &c.,

being equal to A X A, A X A X A P, can only divide

these diflferent products when it divides one of the factors.

3d. If two numbers, A and B, are prime with each other, their

powers, A^ and B^, A^ and B^, &c., are also prime with each

other. For any number, a, which is the common divisor of A^

and B*, for example, must divide A and B, which is, by hypo-

thesis, impossible.

125. 4th. Every number, P, prime with each one of the fac-

tors of a product, A X B X C X . . . ., is also prime with the

product. For suppose that a prime number, d, differing from 1,

can divide at once P and the product AxBxC , asc?

ought to divide one of the factors of the product, P would not

be prime with this factor, which is contrary to the hypothesis.
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126. 5th. Wheyi a nvmhcr, N, lias heen formed hy the multi-

plication of several others. A, B, C, D, . . . ., this inimher can have

no other prime factors except those which 'already enter into A,
B, C, Dj &c. For every prime number which divides the pro-

duct, A X B X C X D, and does not divide J), must divide

A X B X C (123) ; in the same manner, every prime number

which divides A X B X C, and does not divide C, must divide

A X B, and, consequently, A or B. Thus, we can say in other

terms, a number heimj formed hy the multiplication of several

others, we cannot obtain it anew by multiplying numbers which

contain prime factors different from those which enter into the

numbers already multiplied.

127. Fourth Principle.— Every number, N, divisible by two

or more numbers, d, d', d",
,
prime with each other, is

divisible by their product.

For, since d divides N, we have N = c? x g', q being an entire

number; but by hypothesis, </' also divides N, then it divides

d X q, and, since d and d' are prime with each other, d' must

divide q exactly; and we have q = d' x q'y where q' is an entire

number. Hence, N = c? X d' xq\ and N is divisible by dx d'.

In the same manner, we can continue and show that N is divisi-

ble hy dx d' X d", and so on for the rest.

128. Consequence.—lid,d',d!', . . . ., numbers prime with

each other, enter as factors into N a certain number of times,

each denoted by n, n', n" , . . ., the number N is exactly divisible

by (/ X (/'"' X d"""", and by all the numbers which we can ob-

tain by multiplying two and two, three and three ; the different

powers of d, d', d", . . . ., comprised between the first and the

n*", n'^^, &c , respectively. For, d, d', d", . . . ., being prime

with each other, (f", ^'"', d"^", .... must be so also; then

(127), their products, two and two, three and three, must be

exact divisors of N.

This principle serves as a basis in the investigation of all the

divisors of a number.

13*
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It is useless to observe, that all the propositions established

thus far are true in all the systems of numeration. '

We will give some now which relate particularly to the deci-

mal system.

129. Signs of the clivisihility of one rmmher hy others.

There are certain signs or characteristics by which we can

often tell whether a number is or is not divisible by others. A
knowledge of these is often useful in practice.

The reasoning by which we will establish these signs or cha-

racteristics of divisibility, rests upon the following principle.

Let a number, A, be divided into two parts, B and C, so that

we have

A = B -f C (1).

1st. If a fourth number, D, divide exactly the two parts, B
and C, it divides also their sum.

2d. If the number, J), divides one of the parts, B, without

dividing the other, C, it will not divide A ; and the reraainder

of the division of A by T), is equal to that which the division of

G by D gives.

Of the first principle, it is very easy to give a general demon-

stration. Divide (1) by D, and we have

D D ^ D ^
•*

B C
Now the two terms, -p- and— j are, by hypothesis, entire num-

bers ; then the first number, — , must also be an entire number.

As to the 2d principle, it is clear from the above equality (2),

that if B is divisible by D, and C is not, A cannot be, for we

would otherwise have a fraction equal to a whole number.

Again, B being divisible by D, we have B = DQ (Q an entire

number) -, C not being divisible by J), we have C = DQ' -|- R.

Then, B -f C = A = DQ + DQ' + R, or A = D (Q-fQ') + R.

Whence we see that A divided by D, gives for quotient, Q-f Q',
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and remainder, R, of the division of C by D. These principles

have been obviously assumed under the head of division.

130. Properties of the numbers 2, 5, 4, 25, 8, 125,

Is^ Every nvmber terminated hy one of the figures, 0, 2, 4,

6, 8, is divisible hy 2. For this number can be decomposed into

two parts, viz : the part to the left of the simple units, and the

collection of simple units. (For example, 38576 is equal to

38570-1-6). Now the first part being terminated by 0, is a mul-.

tiple of 10 ; and 10 we know is divisible by 2 ; then this first

part is divisible by 2. And if the second part contains 0, 2, 4,

6, 8, units exactly, it is divisible by 2. Hence, the number is

divisible by 2.

If the number is terminated by one of the figures, 1, 3, 5, 7,

9, it is not divisible by 2, since one of its parts is divisible, and

the other is not. The numbers divisible by 2, are even num-

bers, the others, odd numbers. The expression 2n (n being any

entire number), embraces all the even numbers j the expression

2n 4- 1, all the odd numbers.

2d. Every number terminated by a {zero) or 5, is divisible

hy 5. The same demonstration as before, for 2. If the last

figure is different from or 5, the number is not divisible by 5

;

and the remainder of the division of this number by 5, is equal

to the remainder of the division of the last Jiyure by 5 (129).

Thus, 1327 divided by 5, gives for remainder, 2, equal to the re-

mainder of the division of 7 by 5. In the same manner, 34789

and 71436 give for remainders^ 4 and 1.

3d. Every number of which the two last figures, taJcen with

their relative value, form a number divisible by 4 or 25, is itself

divisible hy ^ or 2b. For this number can be decomposed into

two parts, the part on the left of the tens, and the part composed

of tens and units. (For example, 3548 and 27875, are equal to

3500 + 48 and 27800 -f 75). Now, the first part being ter-

minated by two zeros, is a multiple of 100 ; 100 is divisible by

4 or 25, since 100 is equal to 25 X 4 ; then, this first part is also
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divisible by 4 or 25. Hence, if the second part is divisible by

4 or 25, then the whole number is. Thus, 3548 is'^divisible by

4, because 48 is a multiple of 4; 27875 is divisible by 25,

because 75 is a multiple of 25. But 13758 is not divisible by

4, and gives for remainder, 2, equal to the remainder of the

division of 58 by 4 ; 25659 is not divisible by 25, and gives for

remainder, 9, or the remainder of the division of 59 by 25.

For the number 25, the numbers terminating in 00, 25, 50, or

• 75, are the only numbers divisible by 25.

4th. Every numher, the three last figures of which considered

with their relative values,form a number divisible by 8 or 125, is

also divisible by 8 or 125.

The demonstration of this is analogous to the preceding. It

is founded upon the fact, that 1000 = 125 X 8.

131. Properties of the numbers 3 and 9. Every number, the

sum of whose figures is divisible by 3 or by 9, is itself divisible

by 3 or by 9. And the remainder of the division of any num-

ber whatever by 3 or by 9, is the same as the remainder of the

division of the sum of its figures by 3 or by 9.

We remark, first, that a number which is composed of unity,

followed by one or more zeros, is equal to a multiple of 9, in-

creased by 1. (For example, 10 = 9 -f 1 , 100 = 99 + 1, 1000 =
999 + 1, all the parts, 9, 99, 999, being divisible by 9 and by 3).

It follows from this, that every number formed by a significant

figure followed by one or more zeros, is itself a certain multiple

of 9, augmented by this significant figure. For example,

70 = 7 X 10 = 7 (9 + 1) =:= 7 X 9 + 7, 80000 = 8 x (1000)

= 8 X (9999 + 1) = 8 X 9999 4- 8.

This established, let us take any number whatever, 6205473,

for example. It can be decomposed in the following manner

:

6000000 + 2000004-0-00004-5000+400 4-70+ 3.

And, according to what has just been said, it contains two prin-

cipal parts. 1st. A sum of several multiples of 9, which sum is

itself a multiple of 9 (129). 2d. The sum of the figures

6+ 2 + 0+5 +4+7+ 3.
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In other words, the number can obviously be written

6 X 999999 + 6 + 2 x 99999 + 2 + + 5. x 999 + 4 x 99

+ 4 + 7x9 + 7 + 3.

The first part is divisible by 9. The second part is or is not.

In the first case, the number proposed is divisible by 9 ; and in

the second case, the remainder of the division of the significant

figures by 9 is necessarily the remainder of the division of the

whole number by 9. The demonstration for 3 is absolutely the

same. We must make this observation, however, when the

number is divisible by 9, it is necessarily so by 3 ; but it can be

divisible by 3, without being so by 9.

To establish the proposition generally,

Let gfdcha be the given number, which we will denote, more-

over, by N ; we have, according to the fundamental principle of

numeration, N=a+105-f 102c+ 10='cZ+10y+10V+ . . . ., an

equation which can be placed under the form

N= I
+(10-1)&+ (10^-l>-f(10^-iy+(10^-l)/+

IU +6 +c +d +/ + j

by adding and subtracting 6, c, d, &c., from the last number at

the same time.

Now, according to what was premised above, 10—1, 10^—1,

10^—1 .... being divisible by 3 or by 9, the first horizontal

line is composed of a succession of numbers divisible by 3 or by

9. Thus, this first part of the number, N, is divisible by 9.

Then, if the second part, which is nothing more than the sum of

the figures of the given number, is divisible by 3 or by 9, the

number itself is divisible by 3 or by 9 ; and, if this last part is

not divisible by 3 or by 9, the remainder of this division will

necessarily (129), be the remainder of the division of the num-

ber itself, by 3 or by 9.

-N. B. In practice, instead of determining the sum total of the

figures, in order to divide it by 9, we subtract 9 from the partial

sum so soon as it exceeds or equals 9, as we proceed with the
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summing up, and continue the operation to the last figure.

These partial subtractions do not obviously change the remainder,

which we seek.

Example.— Given, the number

74683056743.

"We say, 7 and 4 make 11 ; 9 from 11 leave 2 ; 2 and 6 make

8, and 8 make 16 ; 9 from 16 leave 7 ; 7 and 3 make 10 ; 9 from

10 leave 1 ; 1 and and 5 make 6, and 6 make 12 ; 9 from 12

leave 3 ; 3 and 7 make 10 ; 9 from 10 leave 1 ; 1 and 4 and 3

make 8. Then, 8 is the remainder of the division of the num-

ber by 9.

132. Property of the number 11.— Every number is divisible

by 11, when the difference between the sum of the figures in the

odd places
J
counting from the right, and the sum of the figures in

the even places, is equal to 0, or divisible by 11.

Before demonstrating this property, it is necessary to re-

mark,

1st. That every power of 10 of an even degree dimi^iished by

unity, gives a result divisible by eleven.

For this result is necessarily composed of an even number of

9's, written one after another. Now, each division of two figures,

taken separately, forms 99, or 9 X 11, divisible by 11 ; then, the

numbers themselves are divisible by 11 ; or, in general, 10^"—

1

is divisible by 11, (2n expressing the even numbers).

2d. Every uneven power of 10, augmented by unify, gives a

result divisible by 11.

For a power of an even degree of the number 10 can be ex-

pressed by 10^"+' (130). Now, 10=^"+'=102"x 10, or 10^-+'=

lO^" X 10 + 10— 10 = 10 (10 2^—1) + 10; adding 1 to both

members, lO^^+' + l = 10(10^"—1) + 11. But,- according to (1)

10^"— 1 is divisible by 11; moreover, 11 is divisible by itself.

Hence, 10^"+' + 1 is also divisible by 11.
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This being established, let ... . lujfdcha be the given number,

which we will call N ; we have N==a-flO^*+ 10\-+10'^i4-10y. . .
.,

an equation which we can put under the form

1 -\-a —h +c —d +/. ... )

Now, according to the two preceding remarks, the first line is

composed of numbers essentially divisible by 11, and forms, con-

sequently, a first part, which is divisible by 11. Then, if the

second part, which is nothing more than the difference between

the sum a+ c-f-f+h-f- . . . . of (he figures in the odd places, and

the sum of tJie figures b-4-d +g+ . . . . of the figures in the even

places, is divisible by 11, as we have supposed; the number, N,

is also divisible by 11. Q. E. D.

133. When the difi'erence between the sum of the figures in

the odd places, and of those in the even places, is neither nor

a multiple of 11, the number itself is not divisible by 11, since

one of its parts is divisible, and the other is not. But, then,

there are two cases to be considered with reference to the manner

of obtaining the remainder of the division.

1st. If the sum of the figures of the odd places is greater than

the second sum^ the difference is to be added to the first horizon-

tal line of the value of N. Denoting then this first line by B,

and the difference to be added by C, we will have, N = B -f C

;

and if C is not divisible by 11, the remainder of the division of

C % 11 will he the same as that which toe icould obtain hy

dividing N hy 11 (129).

2d. If on the contrary, the sum of the figures of the odd

orders is less than that of the figures of the even orders, the dif-

ference will have to be subtracted from the first line, and we

shall have N = B— C ; C designating always the numerical

value of the difference.

In order to determine in this case the remainder of the divi-

sion of N by 11, let us observe that we have B = 11 x Q,
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Q being an entire number, and C = 11 x Q' hJR-'} then, N =
11 X Q— 11 X Q'— R, or, subtracting and adding 11,

N=llxQ— 11x0^—11+ 11—11=11 (Q—Q'—l) +ll—R.

Whence we see in this case the remainder of the division of N
by 11, is equal, tiot to the remainder R, of the division of C b?/

11, but to the difference between II and 11.

In order to fix these ideas, let the number be 47356708.

Adding up the figures in the odd places, we obtain (setting out

from the right), 27 ; adding uj) the figures of the even orders, we

obtain 13. Now, the first sura is greater than the second. Then,

if we take the diff'erence, which gives 14, the remainder, 3, of

the division of this diff'erence by 11, is equal to that of the divi-

sion of the number itself. But, if we had the number

370546345, since the sum of the figures of the odd orders is 15,

and that of figures of the even orders, 22, it follows that if we

take the diff'erence between the two sums, which gives 7, the re-

mainder of the division of the number itself is not 7, but 11—7,

or 4.

134. Verification of multi-plication and division, by the pro-

perties of 9 and 11.

We cannot pass over a simple and very convenient means of

verifying the multiplication and division of entire numbers. We
enunciate this method as follows :

Add the figures of the multiplicand, and divide the "sum by 9

;

add. the figures of the multiplier, and divide this sum also by 9.

We thus obtain two remainders, which (131), are nothing more

than the remainders of the division of these numbers by 9. Mul-

tiply these two remainders together,, and divide their product by

9; this gives a third remainder. Finally, add the figures of

the product, and divide the sum by 9. We obtain thus a fourth

remainder, which is equal to the third when the multiplication

has been accurate. Let the two numbers be, for example, 5786

and 475, to be multiplied one by the other. The multiplication

being performed, we add the figures of the multiplicand, rejecting

the 9s by partial subtractions, as in (131). We thus obtain 8 for
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the first remainder. We operate in the 5786 8 2

same manner on the multiplier which 475 7 2

gives 7 for remainder. This 7 we write 28930
under the 8, as in table. We then multiply 40502
8 by 7, giving 56, which we divide by 9, 23144
giving 2 for remainder (or we can say 5 and

6 make 11, and 9 fronj 11 leave 2). Finally, 2748350

we operate upon the product as upon the factors, which gives 2

for a fourth remainder. This being equal to the third, we con-

clude that the operation is exact.

In order to establish this method of verification by 9 in a

general manner, let us denote by A and B the two factors, by Q,

Q', R, and R', the quotients and the remainders of the division

of the multiplier and multiplicand by 9 ; we have the following

equations,

A = 9 X Q + R,

B = 9 X Q' + R'.

Multiplying these two, member by member, we obtain

AB = 9x9xQxQ'4-9xQ'xR+9xQxR'+RxR'.
Now, the three first terms of the second number of this new

equation, are evidently multiples of 9; then (129), the re-

mainder of the division of the product AB by 9, must be that

which the division of Rx R' by 9 gives. And this is what we

wished to demonstrate. If one of the two factors of the multi-

plication is divisible by 9, the product ought to be so also ; it is

the same if the product R x R' is divisible by 9. Or, we may

express it thus : if one of the first remainders is Oj the third must

also be 0. Hence, the fourth must be 0. Again, when the first

two remainders are equal to 3, in which case the third remainder

is equal to 0. Hence, the fourth must be 0. As to the verifi-

cation of division, two cases can occur; either there will be a re-

mainder after the ordinary operation is performed, or there will

be none.

1st. If there is no remainder, the dividend is regarded as the

product exact of the quotient and divisor ; and we can apply the

14
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preceding nile regarding the divisor and quotient, as the two

factors of a multiplication.

2d. If we obtain a remainder, we commence by subtracting

this remainder from the dividend. The result of this subtrac-

tion will be the exact product of the quotient and divisor, and

we operate upon these three as before.

N. B. The verification hy 9 is liable to several causes of error

,

of which the following are the principal.

1st. It is possible that either in the partial products or in the

total product, we may have written a for a 9, or reciprocally

;

or, in the one, a figure too small or too great by a certain number

of units, and in the other, a figure too great or too small by the

same number of units.

2d. I.t is possible, also, when there are zeros in the multi-

plier, that we may not have written the partial products far

enough to the left. We perceive at once, in these difi'erent cases,

that the errors committed have no influence upon the remainders

of the division by 9, of the terms of the operation to be verified.

The verification by 9 is only then, properly speaking, a half

proof, to which we can have recourse when pressed for time ) it

being certain when the third and fourth remainders are not

equal, that the operation is incorrect. But if they are equal,

there is only a great prohahility that the product is the required

one.

The verification by 11, which does not differ from that by 9,

except in the manner of obtaining the remainder of the division

of a number by 11, is preferable, though itself subject to some

errors; but these errors occur much less often than in the

method by 9. These verifications can be applied equally to the

multiplication and division of decimal fractions, since these ope-

rations are performed in the same manner as in whole numbers.

135. There exist also, characteristics by which we can tell

whether a number is divisible by the prime numbers, 7, 13, 17,

. . . . ; but the rules which it is necessary to follow, are longer

in practice than the division of the number by 7, 13
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These questions demand, moreover, a greater knowledge of alge-

bra than the questions heretofore discussed.

We will, however, give the following question as an exercise

for the pupil ; to determine in any system of numeration what-

ever, whose base is b, what numbers enjoy properties analogous

to the properties of 9 and 11 in the decimal system, and to de-

monstrate these properties. This can be solved very readily ac-

cording to the principle, that in every system of numeration, any

power whatever of the base can be expressed by unity, followed

by as many zeros as there are units in the exponent of the power.

136. As to the characteristics of the divisibility of a number

by the multiples, 6, 12, 15, 18, 86, 45, of the prime numbers,

2, 3, 5, they are sufficiently simple to find a place here.

1st. An even number is divisible by 6 or 18, when the sum

of its figures is divisible by 3 or 9. For this number is then

divisible by 2 and 3, or 9 ; now 2 and 3, 2 and 9, are prime

with each other; then (127), the number is divisible by 6

or 18.

2d. A number is divisible by 12 or 36, when the two last

figures form a number divisible by 4, the sum of the figures of

the number being at the same time divisible by 3 or 9. For

then, &c.

3d. Finally, a number is divisible by 15 or 45, when the last

figure is or 5, and in addition to this, the sum of the figures is

divisible by 3 or 9.

We pass now to the method of finding all the divisors of a

number, both prime and multiple.
'

137. We will divide this question into two distinct parts :

The first has for its object to determine all the prime factors

which enter into any given number, and the number of times

that each prime factor enters.

The second has for its object to obtain all the divisors, prime

or multiple, which the number contains.



2820 2

1410 2

705 3

235 5

47 47

1
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First Part.— To decompose a number into ^11 its prime

factors.

Let the number be for example, 2820.

2820=22x3x5x47.

We draw first a vertical line, to the left of which we place the

number, the divisors to be written to the right of the same line

:

2820 being divisible by 2, which we write opposite it on the

right of the vertical line. We perform the division of 2820 by

2, and write the quotient, 1410, below the 2820. As 1410 is

divisible by 2, we place this second divisor below the first ; then

the resulting quotient, 705, below the preceding, and we have

2820=2^x705.

Now, we say, that the search for the prime divisors of 2820,

other than 2, is now reduced to finding the prime divisors of

705. For, 1st. Every divisor of 705 must divide its multiple

2^x705. 2d. Eeciprocally, every prime divisor of 2820, other

than 2, must divide 705.

We are then to operate upon 705 as upon the given number;

705 is divisible by 3 ; we write this new divisor under the pre-

ceding; then we place the corresponding quotient, 235, under

the last already obtained, and from this results the new equality

2820=2^x3x235.

235 not being divisible by 3, the question is reduced to finding

the prime divisors of 235. Now, this number is divisible by 5,

which we write in the column of divisors. The quotient of 235

by 5, 47, we place in the column of quotients.

We have then the equation

2820=2^x3x5x47.
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"We arc now led to seek the prime divisors of 47. But 47 is

obviously itself prime ; for the simplest prime number, after 5,

is 7 ; and 7 will not divide it. Moreover, 7 X 7=49, a number

greater than 47 ; whence we conclude that 47 is a prime number.

Dividing it by itself, we set the quotient, 1, below the others.

Here the operation ceases, and we have 2820=2^x3x5x47
for the number 2820, decomposed into its prime factors.

138. Important Remark.— Before going farther, let us gene-

ralize what has just been said, in order to prove that 47 is a

prime number \ we will thus establish for every number a limit

above which it is useless to go in the search for its prime

divisors.

Let N be the given number, and suppose that we have tried

in vain, as divisors, all the prime numbers up to ascertain number,

a, the corresponding quotient of which is g-, a fractional number

less than a. We say, that the trial of any other number would

be useless, and that N is a prime number

For we have, according to the supposition, N= axg' {q being

fractional and less than a). Now, if there existed a number a'

greater than a, which could exactly divide N, we would have,

denoting the quotient by g',

N=a'X2' {^ being an entire number).

Whence, a X q= a' x ^. Now, a' being greater than a, ^
must, to compensate, be less than q, which is itself less than a.

Hence, the number N would have an entire divisor less than a,

which is contrary to our hypothesis.

Take, for example, the number 263. No one of the prime

numbers, 2, 3, 5, 11, 13, will divide this number. But, trying

17, we find a fractional quotient, 15 + 1%, a number less than

17 ; whence, we conclude, that 263 is a prime number.

In general, the limit of the trials in the search for the prime

divisors of a number, is the smallest prime number which gives a

fractional number less than this number taken for the divisor.

There are other limits which we will not investigate.

14*
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Let us now render general the method which we' have, for the

sake of clearness, commenced, by developing upon a particular

example.

Let a be the smallest prime number, commencing with 2,

which divides N. We divide N by a, the quotient by a, the

second quotient by a, as long as the exact division is possible.

Calling n the number of divisions which we have found it possi-

ble to perform, we have the equation N=a"xN' (N' being

entire). We pursue the same course of reasoning as in (137),

to show that the question is now reduced to operating upon N'

in the same manner ; fcalling h the simplest prime number which

divides N', and jp the number of successive divisions which can

be performed, we have N = a"xZ>PxN", (N" being entire),

admitting that c and d are the only factors of N", so that we

have

N'' = c-i X N'", and N"'c?»,

we obtain

N = a" X Jp X ci X (7%

and the number N is thus decomposed into its prime factors

;

and we know, too, the number of times that each one of these

factors enters into it.

It results, moreover, from the general proposition (126), that

these prime factors, raised to the powers denoted hy the exponents,

n, p, q, s, respectively, form the only system of prime factors

into which the number, N, can he decomposed.

140. Second Part.— To determine all the divisors, hoth simple

and multiple, of any number whatever.

From the same form under which we have just represented

the number N, results a method of resolving this question. Let

us write

1, a, a^, a^, a'', .... a" (n + 1 terms).

1, h, b\ b% b\ . . . . b^ {p-^l terms).

1, c, c^, c^, c*, . . . . c« (2 + 1 terms).

1, d, d", d% d\ . . . . d' (s-\-l terms).
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It is evident that we would obtain all the divisois of N, unity

included, by multiplying all the terms of the first line by all of

the second, then all the terms of the product, by all the terms

of the third line, and, finally, all the terms of« the new product

by those of the fourth line, since the different terms of this last

product, are the products 1 and 1, 2 and 2, 3 and 3 . . ., of a,

hj c, . . ., raised to powers whose degrees do not exceed n,^, q,

and s. Now, the number of this last product is (w-f-l) X (p+1)
X (g' 4- 1) X (s 4- 1). From this we deduce the following rule,

also, for the total number of divisions of any number.

Increase hy unity the exponents^ n, p, q, s, . . . of the differ-

ent prime factors which enter into the number, N. Then multi-

ply together these exponents, thus augmented by unity ; the pro-

duct expresses the total number of divisors of N, unity being

comprised among the number.

Let N, for example, be equal to

2^ X 3^ X 5^ X 7 X 13^

The expression above becomes, in this case,

4x3x6x2x 3, or 432;

thus, the number N has 432 divisors.

141. The method which we have just indicated for determin-

ing all the divisors, prime and multiple, of a number, being not

very convenient in practice, we will explain upon a new ex-

ample, a more expeditious process.

1

5880 2

2940 2,4

1470 2,8

735 3, 8, 12, 24

245 5, 10, 20, 40 15,

49 7, 14, 28, 56 21,

30, 60, 120

42, 84, 168
I

35, 70, 140
|
280

|

105, 210, 420, 840

7, 49, 98, 196
|
147, 294, 588, 1176

|
245, 490

980, 1960
I
735, 1470, 2940, 5880.

1

In all, 4 X 2 X 2 X 3, or 48 divisors.
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,

Explanation of the Table,

After having determined the prime divisors of 5880, by the

method of (137), 'we write 1 above the factor 2, in the column

of divisors. We pass to the second divisor, 2, by which we mul-

tiply the preceding; this gives the new divisor, 4, which we

place on the right of the second divisor. Passing to the third

divisor, 2, we multiply 4 only by 2, and place the product on

the right of the third divisor. Passing to the divisor, 3, we

multiply it by all the divisors which precede, viz : 2, 4, 8

;

which gives the new divisors, 6, 24, 48, which we place on the

right of the divisor 3.

In a word, when we descend to a new divisor, we multiply all

the divisors which precede by this divisor, taking care not to

repeat, however, the products already obtained. It is certain

that the products to which this mode of proceeding leads, com-

prehend all the divisors of the given number ; since they are the

combinations of the factors, 2, 3, 5, 7, raised respectively to

powers whose exponents do not exceed 3 for 2, 1 for 3, 1 for 5,

and 2 for 7.

142. The search for the prime factors of every number, is one

of the most important questions of arithmetic, and one of the

most useful in practice. One of the applications we have seen

in finding the least common multiple of several numbers. We
may also apply it in finding the greatest common divisor of two

numbers, this being obviously the product of all the prime fac-

tors common to the two numbers. Thus, for example :

We find for the prime divisors of the number 2150, 1 x 2 x
5 X 5 X 43, and for the number 3612, 1 X 2 x 2 x 3x7x43.
Hence, the G. C. D. of these two numbers is 2 x 43=86. The

reasons are obvious from the preceding articles.

Formation of a Table op Prime Numbers.

143. The principles which we have established concerning

prime numbers, and the application which have been made of
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them, show sufficiently the utility of a table of this sort of num-

bers, as extended as possible.

There are several tables of this sort, some of them compie-

hending all the prime numbers from 1 to 3036000.

To give some idea of the manner in which such tables are

made, suppose that we wished to form a table of prime numbers

from 1 to 1000.

The first thousand numbers are written one after another in

the most convenient form possible ; for example, in ten columns,

containing one hundred numbers each.

We then proceed as follows :

We draw lines across, 1st, all the even numbers except 2

;

2d, all the multiples of 3 except 3, which remain after the first

operation; 3d, and, in the same manner, the multiples of 5,

other than 5, which have not been crossed in the first two opera-

tions. This done, we can affirm that all the numbers which

have not been thus marked, from 1 to 7 X 7, or 49, are prime

numbers, since all the multiples of 2, 3, and 5, as well as the

multiplies of 7, below this limit, have necessarily been marked

;

and we have thus the prime numbers from 1 to 47. In the same

manner, if we mark all the multiples of 7, from 49 up to 121,

or 11 X 11 (11 being the prime number which comes directly

after 7), we are then certain that the numbers preceding 121,

which are not marked, are prime numbers; we thus obtain all

the prime numbers from 47 to 113, inclusive.

Without carrying the details of this operation any farther, it

is easy to see that we are thus led. to suppress, successively, all

the multiples not yet suppressed, of the prime numbers already

found, 11, 13, 17, . . , until we arrive at the number 997, the

last one remaining of the first thousand numbers, after the suppres-

sion already made of 998, 999, and 1000, as multiples of 2 and 3.

We find, thus, the succession of 169 prime numbers comprised

between 1 and 1000, the table of which we subjoin, adding the

six prime numbers which follow them.
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Tahle of Prime Numbersfrom 1 to 1033.

1 97 229 379 541 691 863
2 101 233 383 547 701 877
3 103 239 389 557 709 881
5 109 241 397 563 719 883
7 113 251 401 569 727 887

11 127 257 409 571 733 907
13 131 263 419 577 739 911

17 137 269 421 587 743 919
19 139 271 431 593 751 929
23 149 277 433 599 757 937
29 151 281 439 601 761 941
31 157 283 443 607 769 947
37 163 293 449 613 773 953
41 167 307 457 617 787 967
43 173 311 461 619 797 971

47 179 313 463 631 809 977
63 181 317 467 641 811 983
59 191 331 479 643 821 991
61 193 337 487 647 823 997
67 197 347 491 653 827 1009
71 199 349 499 659 829 1013
73 211 353 503 661 839 1019
79 223 359 509 673 853 1021

83 227 367 521 677 857 1031

89 373 523 683 859 1033

144. Remark upon the greatest common divisor.

We may find it necessary sometimes to find the greatest

common divisor of several numbers. For this we give the

following rule. We find first the Gr. C. D. of two of the num-

bers, then the G. C D. of the one already found and a third

numbery then the G. C. D. of this last common divisor and a

fourth number

Let A, B, C, E, F, . . . be the given numbers, and call D
the G. C. D. of A and B, D' the G. C. D. of C and D. Then

we say that D' is the G. C. D. of A, B and C. For the G. C. I).

of A, B and C, must divide D, and moreover must divide C.

Hence, the greatest number which divides both C and D, is the

greatest common divisor of A, B and C, and D' is that number.

The same course of reasoning will apply to the rest of the

numbers.
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We see that there is some advantage in operating first upon

the two simplest numbers, since the Gr. C. D. sought cannot exceed

that which exists between these two numbers.

We could also decompose the numbers into their prime factors,

and proceed as in the method proposed in (142).

145. Remark upon tlie least common multiples.

We have already given a method of finding the least

common multiple of several numbers in the chapter on vulgar

fractions, which is rendered complete by the method of obtaining

ihQ prime factors of any number whatever
j
given in (137, 138).

We give here another method founded upon the preceding theo-

ries. We consider, first, the two numbers, A and B. Denoting

their greatest common divisor by D, and by q^ (( the quotients

of the division of A and B by D, we have the two equations,

A=Dx 2", B==D X ((; q and ^ being prime with each other.

Now, we say, that the least common multiple required is

equal to

D X ^ X 2'.

For this product is obviously a multiple of A and B, since it is

divisible by D X g- and D X q'; it remains to be proved that it is

the least multiple which we can obtain.

Let us call Mamj multiple whatever of A and B. In order

to be divisible by A or D X g', M must contain all the factors

which enter into each one of the numbers, D and q; for the

same reason it must contain all the factors of each of the numbers

D and g' ; and since q and q^ are prime with each other, M can-

not be less than J) X q X q'- We have then the following rule

:

Determine the Gr. C. D. of A and B ; then divide A and B by the

Gr. C. D. ; multiply the Gr. C. D. and the product of the two quotients

;

this gives M for the least common multiple of A and B. Find

the least common multiple in the same manner of M and C.

This will be the L. C. M. for A, B, C. Operate in the same man-

ner on all the rest of the numbers in succession. The method

given under the head of reducing fractions to the least common
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denominator, can be reduced to practice thus, (now that we know
the method of jBnding all the prime factors of any number).

For example, take the numbers, 6, 9, 4, 14, and 16.

2)6, 9, 4, 14, 16

2)3 9 2 7 8

3)3 9 1 7 4

13 17 4 2x 2x3x3 X7x4=least com. mult.

We place the numbers in a horizontal line, and commence with

the prime number, 2, as a divisor. We divide all those numbers

which are divisible by 2, and bring down the quotients, together

with the numbers not divisible. We proceed in the same manner

with the quotients, until there are no two which 2 will divide.

We then divide the last quotients and numbers brought

down by the prime number, 3, and continue the operation

until there are no two numbers left divisible by any number

greater than unity. We then multiply the divisors and the

numbers thus remaining together for the least common multiple.

It is evident that we thus form the least number divisible by the

given numbers.

Or Periodical Decimal Fractions.

146. The valuation of vulgar fractions by decimals, that is to

say, by tenths, hundredths .... of the principal unit, gives rise

to singular circumstances which merit an examination. But, be-

fore entering upon the discussion of them, we must return to the

method for converting a vulgar fraction into a decimal.

We have seen that, in order to effect this reduction, we must

1st. Annex a to the numerator', and divide the resultimj

number hy the denominator ; this gives the tenths of the quotient

and a remainder. 2d. Write a new on the right of the re-

mainder, and divide hy the denominator, obtaining thus the

hundredths of the quotient. We continue this operation until we

have reached the degree of approximation required. This pro-
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cess is evidently the same as multiplying the numerator hy unity

^

followed hy as many zeros as we wish decimal figures in the re-

sult; then dividing the result hy the denominator, and pointing

off in the quotient the numher of decimalfigures required.

147. This enables us to demonstrate the two following pro-

perties :

1st. Every vulgar fraction whose denominator does not contain

any prime factors other than 2 and 5, is reducible to a limited

numher of decimal figures ; that is to say, after a certain num-

ber of operations, we must arrive at a remainder equal to ; in

which case the decimal fraction obtained expresses the exact

value of the given fraction. Besides, if the fraction is reduced

to its simplest form, the total riumher of operations to he per-

formed in order to reduce it to its equivalent decimal is always

equal to the greatest of the two exponents of 2 and 5, which enter

into the denominator.

Thus, the fractions

7 13 11 317
5J 3Tf? 4TJJ T3S0>

which can be placed under the forms

2? 52' 2\b 2.5*'

are reducible to a limited number of decimal figures. The first

gives rise to three operations, the second to two, the third to

three, and the fourth to 4.

We find, in fact, for their values,

0-875; 0-52; 0-275; 0-2536.

In order to prove this property generally, we remark, that

10, 100, 1000 .... being equal to 2x 5, 22x b\ 2'x 5^ • • .,

if, in order to effect the reduction to a decimal fraction, we mul-

tiply the numerator by 10, 100, 1000 . . . ., the resulting product

will necessarily be divisible by 2 X 5, 2^ X 5^ .... ; then, in

15
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multiplying this numerator by unity, followed by as many zeros

as there are units in the greatest of the exponents of 2 and 5,

"which the denominator contains, the resulting product will ne-

cessarily be a multiple of this denominator.

Then, the number of operations to be performed is equal to

the greatest of the two exponents of 2 and 6, which enter the

denominator of the given vulgar fraction.

148. Every irreducible vulgar fraction^ whose denominator

contains one or more prime factors different from 2 and 6,

gives rise to an infinite number of decimal figures. Moreover

j

the decimal fraction resulting from it is periodical ; that is to

say, after a certain number of operations, the same decimal

figures recur again.

For the multiplication of the numerator by 10, 100, 1000, can

only cause the introduction of the two factors, 2 and 5, raised to

certain powers ; thus, the prime factor which we suppose to be

in the denominator, and not in the numerator, will not be in the

latter, after this multiplication by 10, 100, .... Then, whatever

number of zeros we add, we shall never obtain a product exactly

divisible by the denominator; thus, the operations can be carried

on to infinity.

We say, moreover, that the decimal fraction will be periodical.

For, as each remainder is always less than the divisor, it follows

that when we shall have performed as many divisions as there

are units less one in the divisor, we will necessarily arrive at a

remainder already obtained, (if, in fact, this remainder does not

recur sooner). Now, annexing a to this remainder, we will

have a partial dividend exactly the same with one of the pre-

ceding ; whence it follows, that we will have a series of quotients

and remainders equal to the precedingj recurring periodically

^

setting out from the first partial dividend, which is equal to any

of the preceding.

Let us make some applications of this.
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149. Required to reduce the fraction, |, to decimals.

60)7

'40(0-857142
|
857142

60

To

Yo

lo

Here the period shows itself after the 6th partial division.

Second Example.— Let the fraction be ||.

130) 37

~19b(0-331
I

S'SI

"l3

In this example, the period commences with the fourth partial

division.

Third Example, f|.

290 ) 84

380(0-34523809
|
623809

lio

200

"328

"680

"800

44

The period is manifest here after the 8th operation. But the

two first decimal figures form no part of the period, while in the
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first two examples the period commences with the first decimal

figure. The periodical decimal fractions, whose period com-

mences with the first decimal figure, are called simple periodical

fractions; and those whose period commences after a certain

number of decimal places already written, are mixed periodical

fractions.

150. We have just seen that certain vulgar fractions, reduced

to decimals, give rise to periodical decimal fractions.

Reciprocally, every periodical decimal fraction, simple or

mixed, arises from, a vulgar fraction, which can easily he found

from any given periodical fraction.

This question presents two distinct cases ; either the periodical

fraction is simple or it is mixed. Let us consider the first case.

Take, for example, the periodical fraction

0-513513513513

and let us designate by N the fraction which has given rise to it.

We have N=0-513513513 .... (1)

Multiplying the two members of this equation by 1000, which is

done in the second member by removing the point three places

towards the right, we obtain

Nx 1000=513-513513513

Or (2) NX 1000=513 + 0-513513513

Subtracting (1) from (2) we have

NX 999= 513.

Then N=fi|.

Let the fraction be N=0-714285714285 (1)

Multiply both members by 1000000, we have

NX 1000000=714285-714285 (2)
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Subtracting the first from the second,

Nx 999999=714285

714285
N:

999999

Reducing the fractions |^| and m||f to their simplest

terms, we get

What we have shown proves that a simple periodical fraction

is equivalent to a vulgar fraction which has for numerator the-

figures of the period, and for denominator a number composed

of as m,any 9'« as there are figures in the period.

Thus, for an additional example, the fraction 0'351351351 ....

is equivalent to the fraction |f^=yVT=i|.

Again, the fraction 0-03960396 .... is equivalent to g|||,
or simply ^W^=TtfT=7^T-

In general, if a; = 0, ahcde .... ahcde .... ahcde (where

abcde .... represent decimal figures with their relative values

and not products^, we shall have

ahcde ....
"^^99999

N. B. If the periodical fraction contains an entire part, we

do not regard it in forming the vulgar fraction ; but we add it to

the vulgar fraction found after it is reduced to its simplest terms.

Thus, given the periodical fraction

4162162
We have, first,

0-162162 . . . . = if|= JA=3^7.

Then, 4-162162 = 4 + /^ = y^*-

151. Second Case.— Required to find the equivalent vulgar

fraction, or generatrix^ as it is sometimes called, of a periodical

mixed fraction.

15*
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Given, for example, the fraction

3-45891891

Multiplying this fraction by 100, we obtain 345-891891 ; and,

according to (N. B.) of preceding article, this expression has for

its value

Q.. ,
891 345 X 999+891

^^^ + 999'^^ 999 '

345 X (1000—1) + 891 345546
^"^

999 '
^^ '~9W~'

But, as we have multiplied the fraction by 100, in order to

reduce the result to its true value, we must divide it by 100

;

we thus obtain y^^^Yo^, a fraction which, reduced to its simplest

form, becomes f|f§, the generatrix of the mixed periodical

fraction, 3-45891891 ....

If the fraction were under the general form,

OfPqrSj abcde, abode ....

its value would be

abcde
^^'^ + 99999'

after multiplying it by 10000, or

pqrs X 99999 + abcde

99999 ~'

or, reducing the result to its true value,

pqrs X 99999 + abcde

999990000
'

We say, then, ani/ mixed periodicalfraction whatever is equi-

valent to a vulgar fraction which has for its numerator the

period, augmented by the product of the part which precedes the

period by a number composed of as many 9s as there are figures

in the period, and for denominator this same number of 9.S,

followed by as many zeros as there are figures in the part which

precedes the period.



GENERAL PROPERTIES OP NUMBERS. 175

Take, for another example,

0-3193069306.

The preceding rule gives for its value,

9306 + 31 X 9999 _ 9306 + 31 (10000—1) __

999900 .
~ 999900

309969 + 9306 319275 _ 129

999900 ~ 999900 ~ 404*

We give here as examples of simple and mixed periodical

decimals,

1st. 0-9999 =1 = 1

2d. 0-012345679012345679 = ^V
3d. 0-987654320987654320 = ffi

4th. 16-285714285714 =
5th. 4-9428571428571 =
6th. 5-52027027 =
, r-o mi • P7^s X 99999 + ahcde , , ^
152. The expression ^-^ leads to some re-

markable consequences. It can be put under the form

j?grs (100000— 1) + ahcde

999990000 '

equal to

pg-j-sOOOOO

—

pqrs + abcde

999990000

This being established, it is obvious from this last form, that

if the calculations which are indicated in the numerator are

effected, the result cannot be terminated by one or more zeros

;

for, in order that this should be the case, it would be necessary

that some of the last figures of pqrs should be the same as the

last figures of ahcde; and, in this case, the period would not

commence after the 4th decimal figure, as we have supposed.

(For example, if we had s = e, r = d, the primitive fraction

would be 0, pqdeabcdeabc . . . .) We s^e, then, that after the

reduction of the expression above to its simplest terms, the result
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must be a fraction, wliose denominator contains the two factors,

2 and 5, or at least one of the two, to the 4th power ; that is to

say, to a power whose degree is denoted by the number of figures

which form no part of the period.

We can infer from this the two following propositions

:

1st. Every fraction whose denominator does not contain either

of the two factors
J
2 and 5, or is prime with 2 and 5, gives riscy

when reduced to decimals, to a simple periodical fraction.

For, if we could obtain a mixed periodical fraction, it should

follow, that the equivalent vulgar fraction, which we obtain by

the rule in (151), being reduced to its simplest terms, should be

equal to the given fraction. Now, that is impossible, (for in

order that one irreducible fraction be equal to another fraction,

the terms of this last must be the same multiples of the terms

of the first).*

It results, then, that the denominator of the proposed fraction

would be a multiple of 2 or of 6 ; which is contrary to the

hypothesis.

2d. Every irreducible fraction, whose denominator contains

one of the factors, 2 and 5, or both, raised to a certain power,

gives rise to a mixed periodical fraction, whose period must

commence after we have found as many decimal figures as there

are units m the greater of the ttvo exponents of 2 and 5, which

enter into the denominator.

First, the periodical fraction cannot be simple ] for the formula

for these sorts of fractions being „ „„ j it is impossible

that this fraction, whose denominator does not contain either of

* The terms of every irreducible fraction are prime with each other,

and every fraction whose terms are prime with each other is an irredu-

cible fraction. This is obvious, as this reduction depends upon suppress-

ing the common divisor of the two terms. Hence, it is obvious, that no

two irreducible fractions can be equal, unless the terms are identical in

both, nor can an irreducible fraction be equal to any other fraction whose

terms are not the same mvltiplen of the terms of the first fraction.
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the factors, 2 and 5, should be equal to the given fraction whose

denominator contains these factors.

In the second place, the period must commence after n figures,

if n express the greater of the two exponents of 2 and 5, which

is found in the denominator; for suppose, for example, that it

commences after n— 1 figures ; the equivalent to this periodical

fraction would have a denominator which would only contain the

two factors, 2 and 5, or one of them to the (n— l)th power, and

could not be equal to the given fraction, since these two fractions

are supposed to be irreducible.

For example, the fractions |,
-l|, (149), gave simple periodical

fractions, because 7 and 37 are prime with 2 and 5 ; but the

fraction, ||, gave a mixed periodical fraction, whose period com-

mences after the second figure, because 84 is equal to 2^X 21.

Finally, the fraction, j4|^ which can be put under the form

145
^^^—pr, should give a periodical fraction whose period commences

after the 4th decimal figure.

We find, in fact, for the value of this fraction in decimals,

0-8238636636

153. We will not carry farther the examination of the proper-

ties of periodical decimal fractions, but close by observing that

properties analogous to the preceding manifest themselves in any

system of numeration whatever. The fractions in any other

system, which enjoy these analogous properties, are those whose

denominators are powers of the Base of the«6ystem. Let this

base be h.

First, in order to reduce a vulgar fraction into subdivisions h

times smaller than unity, and into other subdivisions h times

smaller than the first, &c., it would be necessary to multiply the

numerator by 6 or 10 ; that is to say, to annex a 0, and divide

the result by the denominator ; which should give in the quo-

tient units h times smaller than the principal unit, and a certain

remainder ; to write a new on the right of the remainder, and
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divide the result by the denominator, giving in the quotient units

h times smaller than the preceding, and h^ times smaller than the

principal unit, and so on. This being established, we deduce

from it by reasoning precisely the same as that which served to

establish the properties of decimal fractions which arise from

vulgar fractions, that the vulgar fractions in a system whose base

is b, being converted into subdivisions b, b^, c&c, smaller than

unity, give rise to fractions (analogous to decimals') of a limited

or infinite number of figures, simple or mixed periodical, and

that the composition of the denominator of the vulgar fraction

ivith reference to the prime factors which enter into the base b,

suffices to characterize these different sorts offractions.

We propose as an exercise for the pupil the investigation of

the enunciations and demonstrations of these properties.

Exercises.

1. Prove that every entire even number is the sum of several

powers of 2, and that every entire odd number is the sum of

several powers of 2, augmented by unity.

Examples, 876, 2539, 6750.

2. Every entire number, which is not prime, has at least one

prime divisor other than unity.

3. The remainder of the division by 9 of the product of any

number of factors, is equal to the remainder which the product

of the remainders of the division of each factor by 9 gives.

Prove that this property belongs to every number, and not to

9 alone.

4. The product of any three entire consecutive numbers is

always divisible by 6.

5. Convert the numbers, 345 and 225, of the decimal system,

into their equivalents in the binary system. Add these last in

the binary system, and convert the sum back to the decimal

system.
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6. All the prime numbers, except 2 and 3, augmented or

diminished by unity, are divisible by 6 ; that is, they are com-

prised in the general formula, Qn ± 1, (read plus or minus), n

being any entire number.

7. If the sum of the figures of any number be subtracted from

the Bumber itself, the remainder will be divisible by 9.

8. The expression rr(n-f l)(2w+l) is always divisible by 6.

CHAPTER VI.

APPLICATION OF THE RULES OF ARITHMETIC.

-

THEORY OF RATIOS AND PROPORTION.

154. Introduction. — We have seen, in the course of the

explanation of the different operations of arithmetic, that these

operations give rise to two principal species of questions. 1st.

Those which have for their object to demonstrate the existence

of certain properties of certain numbers known and given. 2d.

Those in which it is proposed to find certain numbers from the

knowledge of other numbers having fixed relations with the first.

The first are theorems, properly speaking ; but we have generally

called them Principles and Propositions. The questions of the

second species, which are not particular applications of the rules

and principles, are called Problems.

The Problems, which we have hitherto solved, have been easy

of solution, because the data were simple, and the relations be-

tween the known and unknown quantities very obvious. But

this is not generally the case -, as very often, in order to arrive at

a solution, we have a considerable difficulty to overcome, which

consists in discovering and determining the series of operations

to be executed upon the numbers known and given, in order to

arrive at a knowledge of the numbers sought.
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Nevertheless, there exists a certain class of questions, the re-

solution of which can be subjected to fixed and certain rules

;

these are particularly those in which we consider Proportional

Magnitudes.

The greater part of these questions are precisely those which

the general necessities of society give rise to, in that which relates

to its commercial, industrial, and financial interests; they are

generally known as the Rule of Three^ the Rules for the calcula-

tion of Interest, Discount, the Rule of Fellowship, Excharige, &c.

To arrive easily at the solution of these questions, we will

commence by explaining the theory of ratios and proportions.

§ I.— Of Ratios and Proportions, and of their Prin-

cipal Properties.

155. We have already said (1), that in order to form an idea

of any magnitude whatever, we must compare it with some other

magnitude agreed upon, of the same species, which can be taken

arbitrarily or in nature. The result of this comparison is what

we have called number. Number, then, expresses the relation

between any magnitude and its unit. Now, if we wish to com-

pare any two magnitudes whatever, of the same species, or what

is the same thing, to compare the numbers which express them,

the result of this comparison is a relation between these two

numbers.

When we thus compare two magnitudes with each other, we

may either wish to know hoio much the greater exceeds the less,

or how many times the greater contains the less. From this

results two sorts of relations between the numbers compared,

one which is sometimes called an Arithmetical ratio, and another

called a Geometrical ratio. But these names, which are but

little significant, are well replaced by the word difference, in

order to express the result of the comparison by subtraction, and

Ratio to express the result of the comparison by division.

Thus, let 24 and 6 be the two numbers which we wish to

compare. We have 24— 6= 18 for the difference, and ^^ = 4

for the Ratio.
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The relations of magnitudes by division or Ratios will chiefly

occupy the present chapter, as by far the most important of the

two classes of relations ; but we will first give one or two leading

properties of the Relations hi/ Subtraction or Differences.

156. In every Difference or Ratio, the two terms are thus dis-

tinguished. The one first written is the antecedent ; the second

term is the consequent. Thus, in the expressions 24— 6, \^,

24 is the antecedent in both cases, and 6 is the consequent. When
the difference between two numbers is equal to the difference be-

tween two other numbers, the four numbers taken together form

an Equi-difference,

For example, let the four numbers, 12, 5, 24, 17 ; the differ-

ence of 12 and 5 is 7 ; the difference of 24 and 17 is also 7.

These, then, form an equi-difference which We write thus

:

12.5 : 24.17.

Placing one point between 1st and 2d terms, two points between

2d and 3d, and one between the 3d and 4th. We enunciate it

12 is to 5 as 24 is to 17;

that is, 12 exceeds 5 by as many units as 24 exceeds 17. We
can also write it

12— 5 = 24— 17;

12 and 24 are the antecedents ; 5 and 17 the consequents. The

first and last term are moreover called the extremes ; the second

and third the means.

This established, we say that, in every equi-difference^ the sum

of the extremes equals the sum of the means.

Let 11.7: 19.15;

We have obviously 11 + 15 = 7 -f 19.

To prove this generally, we observe that if the consequents

were equal to their antecedents, as for example,

11.11 : 19.19,

16
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the proposition would be manifestly true. Now, in order to place

the first equi-difference under this form, we have simply to add 4

to each of its consequents ; that is, the sum of the means and

sum of the extremes are augmented by the same number. Hence,

if these sums are equal now, they must have been so before.

Then, &c.

As a consequence of this property, knowing three terms of an

equi-difference, we can find the fourth. Thus, let

23.11 : 49.x, (x being the unknown term),

be the equi-difference, we have

23 -i- a; = 49 -f 11

;

whence x is known. Sometimes two of the terms of the equi-

difference are the same as

27.39 : 39.51.

Here the double of one of the means is equal to the sum of

the two extremes, or the mean itself is equal to half the sum of

the extremes. Thus, in the equi-difference,

23..X : a:.49,

^^ 49+23
^g^^

and this number is called the average or arithmetical mean of

the two numbers.

It is useless to proceed farther with the properties of equi-

differences, as they are of very little use. We will merely add,

that no transformation executed upon an equi-difference destroys

this equi-difference, so long as the sum of the extremes remains

equal to the sum of the means.

We pass to the discussion of Ratios and Proportions, properly

so called.

157. The ratio of two magnitudes, we have seen, is the quo-

tient of the division of the numbers which express these magni-

tudes. This ratio can be an entire number or a fractional
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number, greater or less than unity. For example, the ratio of 24

to 6 is \S or 4 ; that of 6 to 24 is g^, or | ; that of 75 to 18 is

7 5 nr 2 5

It is in the sense of Ratio that we have hitherto understood

the comparison of any magnitude whatever with its unit (No. 1).

In the theory of compound numbers, the relation of the princi-

pal unit to its subdivisions, or between two subdivisions, is the

number of times which the one contains the other.

158. The comparison of two concrete numbers supposes always

that these magnitudes are of the same species, since we cannot

compare magnitudes of diflferent species (No. 2).

The ratio is itself, by its very definition, essentially an abstract

number, expressing how many times one of the numbers contains

the other, or is contained in it. The antecedent and consequent,

which form the latio, are, we have seen, the numerator and de-

nominator of a fractional expression which we obtain, in indi-

cating the division of the two magnitudes which we are com-

paring.

159. When the ratio of two numbers is equal to the ratio of

two other numbers, we say, that the four numbers or magnitudes

which they represent, are in proportion, or proportional. A
proportion is then the expression of the equality of two ratios.

For example, the ratio of 48 to 12 being 4, and of 86 to 9

being also 4, we have the equation

48 = 3^6^ or 48 : 12 = 36 : 9.

It is sometimes more convenient to present the proportion

under the form 48 : 12 : : 36 : 9, which is thus enunciated

:

48 is to 12 as 36 is to 9.

The terms 48 and 36 are antecedents ; 12 and 9 are conse-

quents. The first and fourth are extremes ; the second and third

are means.
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160. Fundamental Properti/.— All proportions possess a pro-

perty which may serve as a basis for the resolution of the pro-

blems whose enunciations contain j^roportional quantities. This

property consists in this :

In every proportion the 'product of the extremes is equal to that

of the means.

Let the proportion be

(1) 24 : 18 T: 20 : 15,

of which the ratios f| and f§ each equals |. We say, that we
must have

24 X 15 = 18 X 20.

For the property would be evident if we had the proportion

24 : 24 : : 20 : 20, (2)

(which we call an identical proportion). Now, to render the

proportion (1) the same as (2), it suffices obviously to multiply

each consequent by | ; but by this, we multiply the product of

the extremes and the product of the means by the same number,

and make the same change in both. Hence, if equal after the

multiplication, they must have been equal at first. Hence the

property is proved.

161. Reciprocally. — If the product of two numbers is equal

to the product of two other numbers, these four numbers form a

proportion of which either pair of factors will constitute the

means, the other pair constituting the extremes.

For, if no proportion existed among these four numbers, it

would be necessary, in order to render the second and fourth

respectively equal to the first and third, to multiply each one by

a different number, expressing in the one case the ratio of the

first term to the second, in the other of the third to the fourth

;

and as the two products would thus become equal by the multi-

plication of each by a different mimber, it would result that they

were not equal before the multiplication ; which would be con-

trary to the enunciation of the proposition.

Then, &c., &c.
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162. Another demonstration of the fundamental property and

its reciprocal. (We employ letters in order to render the reason-

ing more concise and general).

Let a, h, c, d, be four numbers in proportion, so as to give

a : b '. : c : a, or -j-= -j.
o a

If we multiply the two members of this equality hj h x d,

product of the two consequents, we obtain

a X b xd _c X b xd
b

^ d
•

Suppressing in each member the factor common to the numera-

tor and denominator, we have

a X d — c X b.

Then the product of the extremes is equal to that of the means.

Reciprocally, let the four numbers, a, b, c, c?, be such, that

we have
a xd = b X c.

Let us divide the two members of this equality hy b X d,

product of one factor of the first member by one factor of the

second, we have thus

a X d _b X c

b X d~ bx d^
or, simplifying,

-^ = -7, or a : 6 : : c : a.
a

Thus, the /our numbers form a proportion of which the factors

of the first product constitute the extremes, the factors of the second

product the means.

163. First Consequence.— In every proportion we can cause,

1st, the tivo means to exchange places; 2d, the two extremes to

change places J 3d, the means to exchange places with the extremes

witJiout destroying the proportion between the four numbers thus

written.

16*
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For it is evident that these changes do not alier the equality

of the two products which the extremes and means of the primi-

tive proportion give. And since, in the new expressions, the

product of the first number by the last always remains equal to

the product of the second by the third., there will always exist a

proportion between the four numbers after the changes are

effected.

Let the proportion be, for example,

48 : 36 : : 72 : 54. (1)

We have, by changing the means for each other,

48 : 72 : : 36 : 54. (2)

By exchanging the extremes,

54 : 36 : : 72 : 48. (3)

By placing extremes in the places of the means, and the means

in the places of the extremes,

36 : 48 : : 54 : 72. (4)

In the expressions (2), (3), (4), the product of the second

number by the third, is

36 X 72, or 48 X 54;

and the product of the first by the fourth,

48 X 54, or 36 X 72.

Now, these products are equal by virtue of proportion (1) ; then

the expressions (2), (3), and (4), are also proportions.

The common ratio of (1) is |, of (2), |, of (3), |, and | for

the proportion (4).

N. B. It is obvious that inverting the order of the terms in

each ratio does not destroy the proportion, since it amounts to

the same change as is exhibited in (4).

164. Second Consequence. — We can in every froportion

multiply or divide one extreme and one mean by the same num-

ber, without destroying the proportion.
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For the products of the extremes and means of the given

proportion being equal, the new products which result from the

multiplication or division of these products by the same number

will also be equal; and the proportion will still exist. There

are many other properties of proportions ; but those which we

have just developed are the only ones of which we shall have

need for the resolution of the problems which depend on this

theory.

§ II. — Resolution op Questions dependent on the

Theory of Proportional Quantities.

Rule of Three.

165. A great number of problems in commerce, banking, &c.,

contain in their enunciation numbers bearing relations to each

other susceptible of being expressed by proportions. Of these

numbers some are given and known, the others unknown, to be

determined. We designate, under the title, the Rule of Three,

the process by which we find the fourth term of a proportion

when three terms are given.

Now, from the property of every proportion that the product

of the extremes is equal to the product of the means, it results

necessarily that, in order to obtain the value of the unknown
term, we must, if it is an extreme, divide the product of the

means hy the known extreme.

And if it is a mean, we must divide the product of the ex-

tremes hy the known mean.

Thus, let the two proportions be

24 :9 : :32 :cc; 45 :36 : ::« :24;

(we denote the unknowns by the last letters of the alphabet).

Since the first gives 24 X cc = 9 X 32, there results

9x32 ^^
^=--24 ^2'
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we have also for the second,

SQx X = 4:5x24:.

Whence, :r =l^^ = 15|? = 30.

The proportions become then

24 :9 : : 32 : 12; 45 : 36 : : 30 : 24.

The common ratio is | for the first, and | for the second.

We pass now to the resolution of some problems, of which

those in (41) may be considered particular examples.

166. Problem First.— Required, the price of 384 lbs. of a

certain commodity, 2b lbs. of which cost ^650?

Analysis.— Since 25 lbs. cost $6*50, it is clear that 2, 3, 4

times 25 lbs. must cost 2, 3, 4 ... . times as much ; thus, the

two given numbers of pounds bear to each other the same rela-

tion as their respective prices. Then, if we designate by x the

unknown price of 384 lbs., and if we consider for the moment

the three given numbers and x as abstract numbers, we have

the proportion

(1) 25 : 384 : : 650 : x.

Whence (165), . == ''%''' =^ = 9984

;

and we conclude that the 384 lbs. of the commodity ought to

cost $99-84.

N. B. Before seeking the value of x by means of the propor-

tion (1), we can simplify that proportion in observing that the

antecedents, that is, one extreme and one mean, are divisible by

25. We then suppress this factor (164), and obtain

1 : 384 : : 26 : a: ; whence, cc = 384 X 26 = 9984.

Another method of resolution.— If 2b lbs. cost $6-50, one

pound must cost 25 times less, or -^^ of $6-50; that is, —ijr--
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Then, SS4:lbs. will cost 384 times as much as 1 lb., or X

384; which gives 899-84.

Second Prohlem.— It takes 135 men 20 days to do a certain

piece of work ; how many days would 300 men require to per^

form the same labour ?

Analysis. — If a certain number of men have employed 20

days in accomplishing the work, it is clear that a number of men

2, 3, 4 ... . times as great must occupy 2, 3, 4 ... . times

shorter period to do the same work, other things being equal

;

then, as many times as the first number of men, 135, is contained

in the second number, 300, so many times the number of days

necessary for the second number of men, or the number sought,

Xj will be contained in the number of days necessary for the first

number of men.

Thus, we have the proportion

135 :300: : a; : 20;

whence, (165), x = —390" ^ ^'

Then, it takes 300 men 9 days to do the work. We could have

suppressed in this proportion the factor, 15, common to the two

first terms, and the factor, 20, common to the two consequents.

We should then have

1 : 9 : : 1 : a:; whence, x = 9.

Another mode of resolution.— If 135 men took 20 days to do

the work, it would have taken one man 135 times as much time,

or 135 X 20 days, and 300 men would have required a number

of days 300 times as small as 20 x 135 ; that is to say,

20x135 2700 _,
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Ratios, Direct and Inverse.

1G7. Before treating more complicated problems, we must

make known certain terms which the consideration of propor-

tional quantities give rise to.

In every question, the enunciation of which contains four

numbers in proportion, two of these numbers are of a certain

species, and the two others of another species ; but each term

of the second species is closely connected by the conditions of

the question with one of the terms of the first.

It is thus in the first problem (166), two of the four numbers

express the weights of a certain commodity ; the other two, the

respective prices of these weights.

In the same manner, in the second problena, we had two num-

bers of men, and two numbers of days; and the latter expressed

the respective periods employed by the two numbers of men to

do the same work. It is agreed, for this reason, to call the two

terms of difi"erent species, thus connected by the enunciation of

the question, Correspondents.

For example, in the first problem, the prices are the corre-

spondents of the pounds ; and vice versa, the numbers of pounds

are the correspondents of the prices.

This established, we say, that there is a Direct Relation be-

tween the numbers of the first species and the numbers of the

second ; or that these numbers are directly proportional, when,

the proportion having been established, we see that as each

number increases or diminishes, its correspondent increases or

diminishes; and that, on the contrary, the Relation is Inverse,

or the four numbers are inversely (or reciprocally) proportional,

when, as each number increases or diminishes, its correspondent

diminishes or increases.

The enunciation of the first problem oifcrs the example of a

direct relation; for the greater the number of pounds, the

greater the price.
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The second problem gives rise to an inverse relation ; for the

more men there are to do the work, the shorter period required.

If the relation is direct^ and if we wish to write the propor-

tion under the form

a '. h '. \ c ', dj

one of the numbers, and its correspondent^ must form the two

antecedents, and the other two the consequents. On the contrary,

if the relation is inverse, one of the numbers and its correspondent

must form the extremes, while the other two form the two means.

When we write the proportion under its equivalent form of two

equal fractions,

a c

T'^d'

it is necessary, in the case of the direct relation, that one of the

numbers and its correspondent form the two terms of the first

fraction, or the numerators of the two fractions, while the other

numbers form the two terms of the second fraction, or the deno-

minators of the two fractions ; and, in the case of the inverse

relation, each number and its correspondent must form the

numerator of the first fraction and the denominator of the

second, or the denominator of the first fraction and the numera-

tor of the second.

N. B. All these distinctions in the manner o^. writing the

proportions furnished by the enunciations of the problems are

of importance, and should be carefully retained in the memory.

168. We say, also, when the relation is direct, that one quan-

tity of each species is in direct proportion with its correspondent

;

and if the relation is inverse, that each quantity is in inverse

proportion with its correspondent. Thus, for example.

Two fractions of the same denominator are in direct propor-

tion with their numerators.

For we have seen that if the numerator is rendered double,

triple, quadruple, .... or one half, one quarter, one third of
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what it is, the fraction will be rendered two, three, four ....
times greater or less than it was.

By an analogous process, we could prove, that two fractions,

having the same numerators, are in the inverse proportion of

their denominators.

When the fractions have different numerators and denomina-

toi'S, we commence by reducing them to the same denominator

or to the same numerator, and the question is thus reduced to

one of the two preceding cases.

We are then led to a new mode of expression, which consists

in saying that the given fractions are in Compound Proportion,

direct or inverse, of the two products of the numerator of the

Jlrst by the denominator of the second, and of the numerator

of the second by the denominator of the first.

In order to justify this mode of expression, let us consider,

for example, the two fractions, | and -^^.

Reducing them to the same denominator, we obtain

3 X 11 J 4 X 7
and

7 X 11 7 X 11'

and these two fractions are in the direct ratio of 3 X 11 to 4 X 7,

or of 33 to 28. If, on the contrary, we reduce them to the same

numerator, they bcQome

3x4 ,3x4
and

7x4 3 x 11'

and in this case the two fractions are in the inverse ratio of the

denominators, or the first is to the second as 3 x 11 is to 7 X 4,

or as 33 is to 28, the same as before.

But we see that the two terms of this ratio are the one, the

product of the numerator of the first fraction by the denomina-

tor of the second ; the other, the product of the numerator of

the second by the denominator of the first.

This compound ratio is in some sort the result of the multipli-

cation of two simple ratios, which are either direct or inverse

with regard to each other.
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169. Ap2)licat{ons.— As application of what has just been

said, we will indicate the method of bringing into a proportion

certain surfaces and volumes or solids, because there is a number

of questions in which we have need of these numerical valua-

tions.

Let it be required to compare the superficial extent of two

pieces of stuff, one of which is 24 yards long by | yard wide ;

the other, 17 yards long by | wide.

By a process of reasoning analogous to that used in (166), we

see that 24 yards long by | yards wide.j is the same thing as

24 X I yards loiig by 1 yard wide.

In the same manner, 17 yards long by j of a yard wide, is

equal to 17 X | long by 1 yard wide.

Then, since the breadth of the two pieces is the same, the

ratio of the two superficial extents is equal to that of the two

lengths, and we lind this ratio to be

94x^-17x=
„,24x2.17x5 24x2x4. 3x17x5

.-4X,.17x„or 3 . ^ '"' 3xT- 3x4 '

or, simplifying, as 64 : 85.

Again, let there be two rolls of paper-hangings, one of which

is 15 yards long, by | of a yard wide ; the other 19 yards long,

by I of a yard wide ; we would find in the same manner for the

ratio of the superficial extents of the two rolls,

-.r / in n 15x4 19x7 15x4x8 19x7x5
15xf :19xi, or -^:-g-, or -^_^:_^-^; or,

simplifying, 96 : 133.

We conclude from this, that, whenever the enunciation of a

question gives rise to a comparison of superficial extents, in order

to reduce them to the unit of length, we must form the product of
the length hy the breadth, and then compare the resultitig quan-

tities.

As to volumes or solids, it will suffice to take one example, in

order to determine the steps to be followed.

17
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Required to determine the ratio in cubic yards of the solid

contents of two pieces of masonry ?

We suppose that the first piece is 60 yards long, by | of a

yard thick, and 3 yards high; and the second, 125 yards long,

by I of a yard thick, and 4^ yards high.

Reasoning, as in the preceding case, we find that for the first

wall it is as if it was 60 x | X 3 yards long, by 1 yard thick, and

1 yard high ; and for the second, 125 X | X | yards long, by 1

yard thick, and 1 yard high. In other words, the two walls must

contain, respectively, 60 X | X 3 cubic yards, and 125 X | X |
cubic yards. Then, the ratio of the two volumes is equal to that

of these two products, or of

60x3x3x4^ 125x7x9 . .^ , ,^.
T7^ to :r5 , or of 48 to 175.
lb lb

Whence we see, that in order to obtain the two pieces of work

expressed in cubic yards, it suffices to form for each one of them

the product of the length by the thickness and by the height.

After which we .easily find the ratio of the two.

Compound Rule of Three.— General Method of Reduction to

Unity.

170. The enunciation of a question often contains more than

four numbers, between which it becomes necessary to establish

either direct or inverse proportions ; and thus arise the distinc-

tions, Single Rule of Three, and Compound or Double Rule of

Three. These names arise from the mode of resolution, which

is an application of the theory of proportions. But this mode

has been generally replaced by the method called the method of

Reduction to Unity, which we will now develop, remarking that

the second mode of resolution of the problems iu (166) is a par-

ticular case of this general method.

171. Third Problem.— It requires 1800 yards of cloth, | of

a yard wide, to clothe 500 men. Required the number ofyards

of cloth, \of a ya.rd wide, which shall clothe 960 men ?
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Table of Calculation.

1800 yards long, | wide, 500 men.

X I " 960

1800 x| '' 1 " 500 "

XX

I

" 1 '^ 960 "

1800x5
4x500
xxl
960x8

la la

i " 1 "

Then
^X7 _ 1800x5

"
^ 960 X 8 4 X 500

*

Analysis.— After arranging upon two horizontal lines, the six

numbers which the enunciation contains, and of which the num-

ber of yards required forms part, we reason in the following

manner : 1800 yards long^ by | wide, and x yards long, by |
1800x5 .xxl ^

,
"Wide, are the same thing as ^ , and —^ yards long, by

1 yard wide.

We write, then, these numbers upon two new lines, preserving

the numbers 960 and 500 in their respective places in the two

new lines. Since, with
^

yards long, by 1 yard wide,

we can clotbe 500 men, one man could be clothed with —.—^777^-
4 X 500

X X 1
In the same manner, if —^ yards can clothe 960 men, one

X X 7
man could be clothed with r:—^77777, which eives a^ain two new

8x960 ® ^

lines, which we place below the preceding. Now, the two last

expressions which we have just obtained, representing both the

quantit}'- of cloth necessary to clothe one man, are necessarily

equal. We have then

XX 7 _ 1800 X 5

8 X 960
~~ 4x500 '
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or, reducing to the same denominator, and then suppressing this

denominator,

X X 7 X 4 X 600 = 1800 X 5 X 8 X 960.

Dividing the two members of the equation by the multiplier

of Xj we have

_1800x5x8x960 _36x960_ 34560

_

^" 7x4x500 - T~ 7--49^7^;

that is, it would require 4937^ yards to clothe 960 men.

Verification.

1800x5 , v . 1 . ifi .1

4^5QQ
reduces, obviously, to Ls^ or 4^;

on the other hand,

34560
X

7 8 X 960'

reduces also to 4^. The number 4^, or 4 yards and a half, ex-

presses in the two cases the quantity of cloth necessary to clothe

one man.

172. Problem Fourth.— 500 men, icorldng 12 Jiours a day,

employed 57 days in excavating a canal 1800 yards long, hy 7

yards wide, hy 3 yards deep ; required in how many days 860

men, working 10 hours a day, can dig another canal 2900 yards

long, hy 12 wide, and 5 deep, in an earth 3 times as difficult to

excavate as the first. (This is one of the most complicutcd ques-

tions which can be given in this Compound Proportion, or Rule

of Three.)

Tahle of Calculations.

500 men. 12 hours. 57 days. (1800x 7x3x 1) cubic yards.

860 " 10 " X " (2900x12x5x3) ''

_ ,, 51800x7x3x11
Iman 1 hour 1 day

\ 500^1^^57 }

1 u 1 . ^ u ^
2900X12X5X3

| ,,
^ ^ ^

\ 860x10 i
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2900x12x5x3 ^. ., ^^ 1800x7x3x1 ,,^
^^^^°^ ^=

860x10 -

^'^'^'^ ^y 500x12x57 '
^^^

_ 2900x12x5x3 x500x12x57
or, X—

^^,^ ^^,^^ ^g^^ ^-^ ^g^ .

Analysis.— It is necessary, first, according to what has been

laid down in (169), to convert into cubic yards the two pieces

of work; the one already executed, and the other to be per-

formed. This we do by multiplying together the length, breadth,

and depth in each case. Besides, since, according to the enun-

ciation, the earth of the second is three times more difficult to

excavate than the first, if we express by 1 and 3 the relative

difficulties, we must introduce into the two products, of which

we have just spoken, the factors 1 and 3.

This established, after having placed, as in the preceding pro-

blem, all the numbers comprised in the enunciation upon two

difi'erent lines, we are led, by a course of reasoning entirely

similar to that which we pursued in the solution of the third

problem, to form two new lines representing,— the one, the work

done by 1 man in one hour and in one day ; the other, the work

done by 1 man in one hour and in x days.

Now, it is clear, that these two quantities of work must bear

to each other the direct proportion of the two periods employed

to perform them. We have then the equality (1) given in the

table of the calculations, whence we deduce the final equation

there given ; and, effecting all the operations indicated, this equa-

tion gives, finally,

a: = 5493VT;

that is to say, it would require 549 days, and ^^j, or about J of

a day, for 860 men to excavate the second canal.

173. The problems which precede, suffice to exhibit the steps

to be followed when the method of Reduction to Unity is em-

ployed.

But it may be useful, perhaps, to consider the results furnished

by the last two problems, in order to deduce from them some new
consequences concerning the use of direct and inverse ratios.

17*
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The analysis of the problem in (171) led to an expression for

the number of cubic yards sought,

1800x5x8x960
7x4x500

Now, if we go back to the enunciation of the question, in

order to distinguish the correspondents of each species, and if

we separate by means of the sign of multiplication (X) the dif-

ferent ratios of each term and its correspondent, we shall be able

to place the preceding expression under the form

X , ^ 960

1800 ~ 4 -^ ^ "^ 500 '

or again, under this,

X 4 960

1800 I 500

Examining the product in the second member, we see that the

second factor, which is the ratio of the two numbers of men to

be clothed, is direct with that of the numbers of yards of cloth,

X
; while the first factor, or the ratio of the two breadths, is

X
inverse with the same ratio, ; thus, this last ratio, called

loOO

compound (168), is equal to the product of the ratios of the two

numbers of men, and of the two breadths, direct for the men,

and inverse for the breadths. And, in fact, the more men there

are to clothe, the more cloth necessary ; but, the wider the cloth,

the smaller number of yards necessary to make a given quantity.

The expression obtained in the problem of (172),

2900x12x5x3x500x12x57
^^ 860x10x1800x7x3x1 '

can be put under the form

X 2900 ., 5 3 V ^^^ V ^2

57T800 ^ ^ ^ -'^
• seo"" 10'
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and we see also, in this case, that the ratio of the two numbers

of days necessary for the performance of the two pieces of work

is equal to the product of the ratios of the correspondents of

each species; direct in the case of the dimensions of the canals

and the difficulties of the excavation; but inverse for the num-

bers of workmen employed, and the numbers of hours per diem

which they laboured. •

Whence we can give this sort of General Rule for the resolu-

tion of every question whose enunciation contains proportional

quantities

:

Form a product of all the ratios^ direct or inverse, of the

correspondents of each species, excepting the ratio of which the

quantity sought forms one part ; then equal this product to the

ratio of the quantity sought to the quantity of the same species

with itself

We obtain thus the expression of the equality of two ratios,

from which we easily deduce the value of the unknown.

Rule of Simple Interest.

174. The Simple Interest on a sum of money is the profit

arising from the loan of this sum for a certain time.

The sum lent, or placed out at interest, is called the Principal

or Capital.

The interest upon a sum of money depends upon the amount

of the Principal, upon the time for which it is lent, and upon

what is called the rate of interest, or the interest which a certain

fixed sum bears for a given fixed period.

Ordinarily, the rate is, in the United States, the interest which

the sum of one hundred dollars bears in one year, and hence is

called the rdiio, per cent.

This rate, which we consider a sort of unit of interest, is

purely conventional, and depends generally on the abundance or

scarcity of capital. Nevertheless, there are, in commerce and

banking, certain limits (in most countries fixed by law), beyond

which the rate becomes usury.
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It is evident that the interest on two principals for the same

period must be proportional to the principals, (the rate being

constant), and the interest on the same principal for two different

periods, are proportional to the lengths of the periods.

Whence it follows, that the rule of interest is only a particular

case of the Rule of Three.

Thus, the questions which arise under it can be treated in the

same manner as the preceding.

175. Example.— Required^ the Interest on $4500 for 2 year%

and 5 months, at the rate ofWl for every $100 ; or, hy ahhrevia-

tion^ at the rate of 7 per cent, per annum.

This enunciation can be thus rendered : $100 bring $7 in one

year, or l2 months ; how much ought $4500 to bring in 2 years

and 5 months, or 29 months ?

The numbers can be thus arranged :

100 12 months 7

4500 29 '< oc

The quantities.

1 I month

11'^
"7

and

7

100x12

X

4500x29*

100x12 4500x29'

express each what one dollar brings in one month, apd must

therefore be equal, and we have,

X ^ 7

4500x29 ""100X12^
whence,

4500 X 29 X 7 ^ 15 X 29 X 7
^~ 100x12 ~ 4

Reducing to decimals,

a: = $761-25,
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the interest on $4500 for 2 years and 5 months, at 7 per cent,

per annum.

176. Generally, let us denote the principal by a, the time by tj

the rate per cent, per annum by i and by g, the interest on the

capital, by a. We shall have,

$100 1 year 1 dollar.

a t 9

1 1
100

^^*''''^

1 1
aXt

ThoH, 9
**

ax<~100'
and, consequently,

aXi
9= innX'- (1)

The time t can be a fractional number of the unit, year haying

for denominator the number of months or of days in the year.

If we place (1) under the form

aXi ^

100

it can be translated into the following rule

:

In order to determine the interest (/, multiply the given prin-

cipal hy the rate of interest for one year, and divide the product

hy 100; then multiply the result hy the number of years, frac-

tional or entire.

Example.— Required, the interest on $2524 65, at 4^ per

cent, per annum for 2 years and 7 months.
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We have, first,

2524-65 x4-5= 11360-925.

Dividing by 100, 113-60925

For two years,
2 yrs. 7 mos.

21^7-21850

6 months, 56-804625

1 month, 9.467437

293-490562; or, $293-49.

It is obvious that this division by 100 can be performed on

the rate before the first multiplication, thus converting that into

a decimal fraction, by which the principal is to be multiplied.

Example.— Requiredj the interest on $365-874, at 5-^ per

cent, for one year ?

This rate, 5J per cent., divided by 100, gives 0-055. We
then multiply 365-874 by 0-055.

365-874

•055

1829370
1829370

$20-12307 $20-12. Ans.

177. This second method, which we have applied in the last

two examples, is always to be preferred, especially when we wish

to determine the interest for a certain number of days.

Required, for example, to find the interest on $1748-19, for

113 days, at 4| per cent, per annum. (We suppose the year to

contain 360 days, 30 days for each month).

We multiply 1748-19 by 4|, divide by 100; we then divide

113 into 60+ 30+20+3 days, and find the interest for each one

of these parts separately. Summing these parts, we have the

interest required.
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Table of Calculationi

1748-19

6992-76

I 874-095

\ 437-0475

8303-9025

;.

by 100, 83-039025 for CDC year's interest.

For 60 days, 13-839837

" 30 *^ 6-919918 half of the above.

" 20 " 4-613279 \ (C it

a 3 a 0-691992 J^ of the int. for 30.

26-065026

Thus, the interest on $1748-19 for 113 days, is $26-06.*

178. The equation (1) of (176), contains the solutions of four

different problems.

1st. Knowing the Principal, time and rate, to find the In-

terest.

This we have discussed in several examples.

2d. Knowing the Interest, time, and rate, to find the Principal.

3d. Knowing the Interest, Principal, and time, to find the rate.

4th. Knowing the Principal, Interest, and rate, to find the

time.

All these admit readily of solution ; but we will limit ourselves

here to an example of the fourth problem, treating it by both of

the methods explained in a preceding article.

* The rjito of 6 per cent, per annum admits of the following abbrevia-

tion of the above rules when applied to a given number of months ; 6

per cent, per annum is J per cent, per month, or 1 per cent, for two

month?. Then we can say, in order to find the interest on a certain

principal for a given number of months, at the rate of 6 per cent, per

annum, we multiply the principal by J the number of months, and divide by

100.
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A sum of $2524-65 brought $293-49, at the-rate of 4^ per

cent, per annum. Required the length of time the sum was

placed at interest ?

First Mode of Proceeding.

100 1 year 4J
2524-65 t 293-49

1 1

1 t

4-50

100

293-49

2524-65

L ~ ^Q^'^^ 12? __ 29349 _ 29349000

r ~ 2524-65 ^ 4T "252-465x45 " 11360925'

Effecting the division, we obtain 2 years and 7 months, ne-

glecting a fraction less than 0-001 of a month.

Second Method.

2524-65

4-1

10098-60

1262-325

or, dividing by 100, 11360-925

113-60925 interest for one year.

And as $293-49 is the interest for t years, we must divide

29349000 by 11360925, in order to obtain the time required, t.

Rule of Discount.

179. Discount is the deduction which is made from an amount

payable at the end of a certain timCj when we wish to mahe it

payable at the present time, or before it falls due by agreement.

It is usually, in bankers' terms, the deduction which we make

from the face (amount of a promissory note, in order to get its

cash value. This reduction is usually made at so much in the
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hundred per annum; and this is the rate per cent, of discount.

The discounter is he who cashes the note by anticipation.

It is easy to see that the rule of discount is the same with the

rule of interest, with this diflference, that, in the latter case, the

horrower is obliged to restore to the lender the sum lent, in-

creased by its interest ; while, in the case of discount, the pos-

sessor or maker of the note receives only the diflference between

the amount of the note and the discount which is made by reason

of the anticipation of its payment.

Example First. — Required^ the discount on a note q/'$875'49,

payable in 18 months, at the rate of 4l'% per cent, per annum.

First Method.

$100 12 months 4-80

875-49 18 " X

^ 1 " Torm <^is^o^°* 0^ ^1 ^^^ 1 y^*^-

1 1

Then,

X

875-49x18

4-80

875-49x18 1200'

4-80 X 875-49 x 18 40 x 87549 x 18
whence, x =

j^OO
==

1000000 >

or, performing the calculations,

a: = 63035280 = 63-04.

Amount of the note, $875*49.

Discount, .... 63-04.

Difference, . . . $812-45, the amount which

the discounter pays.

18
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Second Method.

Amount of note, $875-49

Rate of discount per an. 4-8

"700392

850196

4202-352

dividing by 100, 42-02352

1 year, 6 months.

1 year, 42-02352

6 months, 2101176

63-03528 as above.

This example suffices to show the identity of the calculations

under the Rules of Interest and Discount.

Example Second. — Required, the discount on a note of
$3478-19, payable in 286 days, the rate being 6*25 per cent, for

360 days.

We commence by decomposing the number 286 into its parts,

180+90 + 10 + 5 + 1.

We then make the following table of calculations

:

347819
6-25

1739095
695638

2086914

217-386875 discount for 360 days.

108-693437
54-346719
6-038524
3-019262
0-603852

180
90
10
5

1

172-701794 discount for 286 days.

$347819
172-70

$3306-49 cash value.
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180. The generalization of the rule of discount would lead to

the equation

(^) ^ = -100-'

in which e E would designate the discounts on $100, and on the

amount of the note respectively. These letters would simply

replace
ff
and t of (176).

We could, according to the equation (2), establish the enun-

ciations of four general problems analogous to those of (178).

181. There is another rule of discount which we cannot pass

by ; for although it is not generally employed, it appears more

rational and more just.

One example will suflfice to give an idea of this second mode

of discounting.

A note o/SlSOO, 'payable at the end of 15 montJiSj is presented

to a hanker
J
who agrees to cash it at a discount of 4 6 per cent,

per annum. Requiredj what the holder of the note must re-

ceive f

Analysis.— Admit, that 4*60, the rate of discount, is at the

same time the rate of interest of a sum put out at interest.

It is clear that the possessor of the note ought to receive now

a sum which, placed at interest at the rate of 4-6 per cent, per

annum for 15 months, would give him, capital and interest added,

the amount of his note.

Now, the interest of $100 for one year, being 4-60, becomes,

for 15 months, 4-60 + \ of $4-60, or $5-75.

This proves that $100, placed out at interest, would, at the

end of 15 months, become $105-75, capital and interest.

Consequently, $105*75, payable in 15 months, are equivalent

to $100 payable now ; then $1, payable in 15 months, is equal to

,
payable now ; and, consequently, $1500, payable in 15

105*75

months, can be represented by

100 X 1500 15000000 ^i . -, q . o n^r

-10575-' '' -10575-' ^^ $1418*43*97,

payable now.
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Whence it follows, that the holder of the note ought to receive

from the banker a sum of $1418-44.

In fact, if we calculate by the Rule of Interest, what $1418-44

ought to bring at the end of 15 months, at the rate of 4-60 per

cent, per annum, we obtain

^ = 81-5603,

which, added to 1418-4397,

gives $1500-0000, the amount of the note.

Now, instead of following this method, the banker determines

the interest on $1500 for 15 months, at 4-6 per cent., which gives

$86-25;

and this he subtracts from $1500-00,

$1413-75, the difference which he

gives the possessor of the note.

N. B. It is to be remarked, that the excess of $86-25 over

$81-56, or $4-69, which the banker gains by the last operation,

is nothing more than the interest on $81-56 for 15 months. For,

multiplying $81-56 by 5-75, (rate for 15 months,) and dividing

by 100, we obtain $4-6897, or $4-69.

This advantage which the banker gains, independently of the

profit which belongs to him of right, is a sheer loss on the part

of the holder of the note.

There is a way of operating, according to the first rule, with-

out injury to the interests of the possessors of notes. This would

be to establish a rate of discount a little lower than the legal rate

of interest ; but the difiiculty would be to proportion the one to

the other fairly under all circumstances.

We give the two rules or enunciations of the two methods

which we have given above.

1st. (179). Calculate the interest on the amount named in the

note
J
from the present time to the date at which it falls due ; then
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subtract this interest from the amount named in the note. This

will be the cash value of the note.

2d. (181). Find what $100, placed out at interest for the

(jiven time will brine/, capital and interest added ; then multiply

the amount named in the note by the ratio of $100 to this sum ;

the quotient will be the present value of the note.

The first rule is genferally received in commerce, because it is

more expeditious and convenient with regard to the calculations.

It is, moreover, a matter of agreement between the banker and

holder of the note.

The Questions of Compound Interest and Discount, and the

subject of Annuities, require a knowledge of the use of Loga-

rithms, in order to be thoroughly discussed. Hence, we pass

them by here, merely adding, that, in Compound Interest, the

interest is added to the principal at the end of the year, or period

chosen as unit; and then this sum is regarded as a new principal,

on which the interest is calculated for the given period, and again

added, &c., &c.

There are a great number of questions, such as Insurances,

Rents, &c., &c., which come under the rule of per centage, but

they present no difficulty to the student who understands tho-

roughly the preceding discussions of proportional quantities.

They are generally given in full in the Commercial Arithmetics.

Rule of Fellowship.

182. The Rule of Fellowship has for its object,

To divide among several persons associated in a partnership

business the profit or loss which results from their enterprise.

It is generally admitted, (and it is moreover conformable to

equity,) that the part of gain or loss of each partner is— 1st,

proportional to the amount of capital he has placed in the busi-

ness, when the times are equal ; 2d, proportional to the time

when the amounts invested are the same.

18*
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From this it results that, for different capitals and different

times, the parts are proportional to the products of the capital

stocks by the times; since, by multiplying the stocks by the

tiuies respectively, we bring them back to amounts invested for

the same time. Thus, the question, considered under the most

general point of view, is, to divide a given number into parts

directly proportional to other numbers also given.

Problem First.— Three persons are associated in trade. The

first puts $15,000 in the common stock; the second^ $22,540;

and the third, $25,600. At the end of one year, the profits of

the enterprise are $12,000. Required, the share of each one of

the partners f

Analysis.— The sum of the three amounts invested in trade

being $63,140, we reason in the following manner

:

$63,140 have given a profit of $12,000 ; then $1 has produced

dollars profit. Then, for

15000 .... we have 1|?^ x 15000 = '-^^^ = 2850-807.
63140 6314

....... .. s^^-'-^r-""-

11999-998.

Thus, the first person must receive $2850-81; the second,

$4383-81; and the third, $4865-38.

And these three sums, added, reproduce the total gain,

$12,000.

Problem Second.—A capitalist commences an enterprise with

a stock q/ $25,000. Five months later, a second capitalist joins

the enterprise, and furnishes an additional capital of $40,000.

Six months after this first addition, a third capitalist adds

$60,000. At the end ff two years the partnership is dissolved,
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after having realised a profit of $76,000. Required^ the share

of each partner?

The $76,000 are to be divided among tlie partners proportion-

ally to the products of their respective investments, by the num-

bers of months during which these funds were in the enterprise.

• Now, 1st, $25,000, invested for 24 months, equal 25000 X 24,

or $600,000 vested for 1 month; 2d, $40,000 invested for 19

months, are equivalent to $760,000 for 1 month; 3d, $60,000

for 13 months, are equivalent to $780,000 invested for 1 month.

The question is then the same as the first. Having formed the

sum of the three amounts invested = $2140000, we obtain suc-

cessively for the three parts or shares of the profit,

First share, ^^^ X 600000 = 21308-411.
' 2140000

Second share, —jjr^^ X 760000 = 26990-654.
' 2140000

Third share, J^^^ X 780000 = 27700-934.
2140000

75999-999.
The shares are, respectively,

$21308-42; $26990-65; $27700-93.

183. In general, let it be required to divide any number, a,

into parts proportional to the given numbers, m, n, p, q . . . .

Form, first, the sum of the numbers, m^ n^ p, q . . . . then,

multiply each one of these numbers by the ratio

m-f-n+p + q-j-....

We obtain, thus,

a X m a xn a Xp
m. -j- n -{-p -^ . . . / m + n +p + . . . . m -\- n + p + '

fractions, which have the same denominator, and are necessarily

in the direct proportion of their numerators, or because of the

common factor, a, in the direct proportion of m, n, p, q . . . .
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When the numbers, m, n^ p, q . . . . are fractional, we com-

mence by reducing them to the same denominator, and then the

question becomes the same as the preceding.

Divide 360 into four parts, proportional to the numbers

2 7 11 17

These fractions, reduced to the least common denominator, be-

COI^G 6 4 8 4 8 8 5 1
• "se? "ggj -ggj -gg-

Then, the four parts must be respectively proportional to the

numbers 64, 84, 88, 51.

The sum of these numbers being 287, we have, successively,

For the first part. Ifo X 64= 80-28.

'' second, 3 fi-o X 84 = 105-37.

" third. 36^ X 88 = 110-38.

" fourth, If? X 5T== 63-97.

36000.

184. The following questions belong also to the same rule

:

Prohlem Third. — Required, to divide a sum of $36,000

among four persons, so that the second shall have twice as much

as the first; the third as much as the first two together; the

fourth three times as much as the third.

We can make the first share a principal unit, with which we

compare the rest. Calling, then, the first part 1, the second

part will be 2, the third 3, and the fourth 9, by the conditions

of the question.

The question is then to divide ^36,000 into four parts, propor-

tional to the numbers 1, 2, 3, 9. We obtain for the four parts,

36000 , 36000 ^,^^
First part, ^-j-^-^-^-^^ X 1 or -^^ = 2400

Second part, X 2 " = 4800

Third part, ^^ X 3 " = 7200

Fourth part, -^^ X 9 ^' = 21600
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Problem Fourth.—A person leaves $40,000, to he divided

among four heirs, so that the first shall have | of the whole ; the

second |; the third | ; the fourth |. Required, the share of each

heir.

If the sum of the four fractions was exactly equal to 1, the

conditions of the bequest would be fulfilled by taking successively

I, |j I, and \, of $40,000. But, if we reduce these fractions

to the same denominator, we find

yo> "5^5? ^0? "go?

the sum of which is greater than 1. Hence, the bequest would

be more than absorbed by the three first parts. But if the

$40,000 is to be divided proportionally to the four numbers,

\, ^, I, \, we would simply have to divide it into parts propor-

tional to the numbers 15, 36, 40, and 30, the same as the pro-

blem in (183).

185. We add here a rule which has for its object to determine

the relative value of the coins of two countries, knowing the

proportions between these coins and those of other countries.

It consists in reducing to a single proportion, by multiplication,

several given proportions. It is really nothing more than an

application of the rule of compound fractions, or fractions of

fractions.

A single example will suffice to give an idea of the rule and

the mode of applying it.

Example.

48 francs ... are equal to 39 English shillings.

13 English shillings " 8 German florins.

50 German florins " 9 ducats of Hamburg.

15 ducats of Hamburg ^^ 43 roubles, Russian.

How many Russian roubles are equal in value to 2500 francs ?

If 48 francs are worth 39 shillings, then 1 franc is worth ||
of a shilling. In the same manner, if 13 shillings are worth 8

florins, 1 shilling is worth
-f^

of a florin ; and, consequently, 1
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franc is worth || of j\ of a florin. Again, if. 50 florins are

worth 9 ducats, then 1 florin equals -^^ of a ducat. Continuing

this reasoning, we find that

2500 francs = 2500 times || of j% of J^ of f | of a rouble.

rri, or^nn ^ 39x8x9x43x 2500 ,

,

Then, 2500 francs
48 X 13 x 50 X 15

''''^^'''

Rule of Alligation.

186. The questions which come under this rule are of two

sorts

:

We may either wish to find the mean value of several sorts of

things
J
knowing the number and particular value of each sort,

or it may he required to determine the quantities of several sorts

of things which must enter into a mixture, knowing the price or

value of each sort, and the price or total value of the mixture.

We will discuss only the questions of the first nature ; the se-

cond belonging to the province of algebra.

Example First. — A wine merchant has mixed wines of

different qualities, viz., 250 pints, at 60 cents the pint; 180

pints, at 75 cents ; and 200, at 80 cents. Required, the price

of one pint of the mixture 9

We observe, first, that

250 pints, at 60 cents, bring $150

180 " at 75 " " US5
200 " at 80 (' " $160

$445

Giving $445 for the total price of the three quantities of 250

wine mixed. 180

If, now, we form the sum 630 of the three numbers, 200

250, 180, and 200, the question will obviously be reduced "7^

to the following :

630 pints of wine cost $445 ; what is the cost of each pint ?

71 cents is the price required.
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General Rule.— In order to find the price of the principal

unit of a mixtvre— 1st. Multiply the price of this principal

unit of each sort of thing hy the number of units of this sort, and

add all the products. 2d. Sum up the numbers of units of these

different sorts. 3d. Divide the sum of the products or the total

price by the sum ofthe numbers of units.

Or, more briefly

—

.Find the total price of the mixture by

summing up the prices of its parts. Then divide this totalprice

by the number ofprincipal units in the mixture. We thus obtain

the price of one principal unit.

Example Second. — We wish to melt together 23 kilogrammes

of silver, 826 thousandths fine j 14 kilogrammes 910 thousandths

fine ; and 19 kilogrammes 845 thousandths fine. Required, how

many thousandths fine the mixture will be ? That is, how many
parts of pure silver each 1000 parts of the new coin will contain ?

(We say an ingot of gold or silver is -^-q, or 880 thousandths, &c.,

fine, when
-f^,

or 880 thousandths of it is pure silver or gold.)

It results, then, from the enunciation, that

1st. 23 k. at -825 = 23 X -825, or 18-975 A;, of pure silver.

2d. 14 k. at -910 == 14 X -910, or 12-740 k. "

3d. 19 k. at -845 = 19 X -845, or 16-055Ar. "

56 47-770 «

Then, the 56 kilogrammes of the mixture contain 47-770

kilogrammes of pure silver. Thus, the fineness of the new ingot

will be expressed by —^^— , or 0-853; that is, it is 853 thou-

sandths fine.

187. Mean or average values.— The determination of the

m^an values of several things of difi'erent values, is a particular

case of the rule of alligation of the first sort.

We call the mean value of several things whose particular

values are already known, the sum of the values of these things

divided by their number. Thus, in the case of two things, the

mean value is the half sum of the values of these things.
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Example Third.— The leDgth of a park was measured four

dififerent times. The first measurement gave 250-439 metres;

the second, 250-695 metres; the third, 249-750 metres; finally,

the fourth, 251-158 metres. Required, the length of the park?

As none of the measurements agree, it is clear that the only-

means of answering the question is to find the average or mean

value of all these measurements. We find for their sum,

1002-042 ; dividing this result by 4, we obtain 250-5105 metres

for the mean.

Problems whichj without depending on fixed or General RuJeSy

can nevertheless he resolved arithmetically.

188. In the preceding questions, the methods of arriving at

the required solution are fixed and general ; that is to say, sus-

ceptible of being applied to all questions of the same nature.

But an infinite number can be proposed which come only in part

under these methods, or do not in any manner depend upon

them. In these cases, algebra alone furnishes sure and direct

methods of resolution. Nevertheless, we will show how these

sorts of questions can be resolved arithmetically. We have seen,

(154), that, in order to analyse or resolve a problem, we must,

hy reflecting upon the enunciation, endeavour to discover in the

relations established among the numbers which enter it, the suc-

cession of operations to be performed upon the known quantities,

in order to deduce from them the values of the unknown.

Problem First — Required, a number, of which the half,

third, fourth, and ^ths, added together, form the number 575 ?

We commence by remarking that, to take the ^, \, \, and |,

of any number, and add them together, is the same thing as

multiplying this number by the sum of the fractions ^, \, \, and

|, or by ^4°. Now, since the product of the number sought

by y^^ must be equal to 575, it results from the definition of

division, that this required number is equal to the quotient of

675 divided by y/ ; and consequently equal to 575 x j\^g.
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Performing tlie operations indicated, we find 420 for the

number.

Verification, 420

The half, =~210

One-third, = 140

One-fourth, = 105

One-seventh, = 60

One-seventh, = 60

Total, ~575

Problem Second.— Required, three numbers whose sum is

equal to 96, and such that the second exceeds the first by 2, and

the third exceeds the sum of the other tioo by 4.

It is evident that, if we diminished the second number by 2,

it would become equal to the first ; and that if we diminished the

third by 2 -j- 4, or by 6 units, it would become equal to double

the first; thus, the sum of the three numbers would be, after

these two subtractions, four times the first number.

Now, the difierence between 96 and 2 -f- 4 -f 2, or 8, is 88

;

whence, we see, that the first number is

equal to one-fourth of 88 = 22

Then the second is .... 22 + 2 = 24

And the third 22 X 2 + 6 = 50

Verification, 96

Problem- Third.— Three workmen are employed to do a piece

of work; the first could do it alone in 12 days, working 10 hours

a day ; the second in 15 days, working 6 hours a day ; the third

in 9 days, icorking 8 hours a day. Required, \st. In what

number of hours the three men working together can do the work;

2d. What part of it each one will do ; 3d. How much each one

ought to get for his labour, the price of the whole work being

8108?

Solution.—We observe that, according to the enunciation,

the first workman could do the work in 12 X 10, or 120 hours

;

then, in 1 hour, he could do y^^ of the work. The second could

19
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do it in 15 X 6, or 90 hours; thus, in one hour, he could do -g^^

of it. The third would do it in 9 x 8, or 72 hours ; then in one

hour he would do 77^ of it. These three workmen labouring to-

gether would then, in 1 hour, do

750 + iJo + 72 = -BE^ or J^ of the work.

Now, if in one hour they do 3^^ of the work, they would do

the whole in 30 hours.

Again, since in one hour the first workman does j|^, in 30

hours, he will do
-f^^j

X 30, or | = j^^. In the same manner,

the second, in 30 hours, performs -^q x 30, or -i = j\. Finally,

the third does t^^^xSO^ or j\.

Then, to find the amount to be paid to each man, we must

divide $108 into parts proportional to the three fractions, -j^^, j*^,

y\, or the three numbers, 3, 4, 5 ; which gives $27, $36, and

$45, for the respective wages of the labourers.

Exercises.

1. A vessel has provisions for only 19 days; yet, by calcula-

tions, 25 days must elapse before she can reach a port. Required,

how much the ordinary rations must be reduced ?

2. Twenty workmen, working 15 days, 10 hours a day, exca-

vated a ditch 65 yards long, by 2-30 yards wide, and -75 of a

yard deep. Required, how many days it would take 36 men,

working 12 hours a day, to dig a ditch 200 yards long, by 3

yards wide, by 1-25 yards deep; the difficulty of excavating the

first earth being to that of the second as 3 to 4.

3. For what period must $3000 be placed out at interest at 6

per cent, per annum, in order to bring $1325-50 ?

4. What is the rate of discount on a note of $2500, payable

in 18 months, for which the sum of $1860-45 was paid in cash?

5. Four partners invested the same sum in an enterprise;

the funds of the first were in the business for 8 months ; the
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second for 7 months; the third for 10 months; and the fourth

for 1 year. Divide the profit of $1800 proportionally to the in-

vestments augmented by the interest on each, at the rate of 4

per cent, per annum ?

6. We wish to divide $60,000 among three persons, so that

the second shall have twice as much as the first, less $2500 ; that

the third shall have three times as rnuch as the first, less $5000.

What is the share of each person ?

7. Two pounds of copper, at 45 cents ; 7 pounds of zinc, at

70 cents ; 9 pounds of antimony, at 50 cents, are melted toge-

ther. What is the price of one pound of the allojr ?

8. A person was asked how much money he had in his purse.

He answered, If you add to the sum which I have, |, f , and |
of that sum, I would then have 175 dollars. What sum of

money has he ?



EXAMPLES.
For the convenience of teachers, we annex the following ex-

amples for practice, as but few are embodied in the work itself.

These are chiefly selected from difierent practical compilations on

arithmetic.

Addition.

Add together, 1225, 3473, 7581, 9064, and 6060. Ans.

Add together, 3004, 523, 8710, 6345, and 784. Ans. 19366.

Add together, 7500, 234, 646, and 19760. Ans. 28140.

Add together, 182796, 143274, 32160, 47047. Ans. 405277.

Add together, 66947, 46742, and 132684. Ans. 246373.

Subtraction.

16844

9786

103034

69845

5987432

278459

7058 33189

7896600

5403257

5403257

4250268

5789232

410204

Multiplication.

1st. Multiply 328 by 2.

Multiply 745 by 3.

Multiply 20508 by 5.

Multiply 3605023 by 6.

Multiply 9097030 by 9.

2d. Multiply 725 by 300.

Multiply 35012 by 2000.

Multiply 9120400 by 90.

Multiply 4890000 by 36000.

Ans. 756.

Ans. 2235.

Ans. 102540.

Jlns.

Ans.

Ans. 217500.

Ans. 70024000.

Ans. 820836000.

Ans.

(220)
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3d. Multiply 793 by 345.

Multiply 471493475 by 4395.

Multiply 89999000 by 97770400.

Multiply 17204774 by 125.

Multiply 3768 by 4230.

Multiply 9648 by 6137.

Ans. 273585.

Ans. 2072213822625.

Ans. .

Ans. 2150596750.

Ans. .

Ans. 49561776.

Division.

1st. Divide 3788 by 2.

Divide 4736511 by 9.

Divide 78920 by 5.

Divide 364251 by 3.

Divide 34300 by 7.

2d. Divide 1203033 by 3679.

Divide 49561766 by 5137

Divide 2150596750 by 125.

Divide 71900715708 by 57149.

Ans.

Divide 78674 by 200.

Divide 32500000 by 520.

Divide 36000000 by 3600.

Divide 27489000 by 350.

Ans. 1894.

Ans. 526279.

Ans. 15784.

Ans. 121417.

Ans. 4900.

Ans. 327.

Ans. 9648.

Ans. 17204774.

1258127. Rem. 15785.

Ans. 393 + 74 Rem.

Ans. 62500.

Ans. .

Ans. 7854.

Vulgar Fractions.

Reduction of Vulgar Fractions to a Common Denominator.

Reduce | and | to a common denominator.

Ans. 3g, ^g.

Reduce ^, |, and | to a common denominator.

^ns. 18, If, If.

Reduce
-f^, J, ^j and |, to a common denominator.

>4?)« _63_0 18911 1800 1750^^^' 3T5(J' 3T50? 3T^UJ 3T5IJ-

Reduce y, I, j^^j, and /^, to a common denominator.

Ai

19
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Finding the Least Common MultipU.

Find the least common multiple of 13, 12, and 4.

Ans. 156.

What is the least common multiple of 11, 17, 19, 21, and 7 ?

Ans. .

Find least common multiple of 6, 9, 4, 14, and 16.

Ans. 1008.

What is the least common multiple of 1, 2, 3, 4, 5, 6, 7, 8, 9 ?

Ans. 2520.

Reduction of Fractions to the Least Common Denominator.

Reduce ^, |, |, and |, to the least common denominator.

Ay,(i 6 8 9 10

Reduce j^g, ^^, and |, to the least common denominator.

J^o 72 60_ 320
,

^Ai&. 3g^, 3gQ, 3g^.

Reduce 4> I? I? i? il? ^^^ hh *^ *^^ ^^^'^^ common denomina-

tor An<i 16 3fi 40 4 2 33 34^"^- ^"^- 48' 45' 48' 48' 4S' 45"

Reduce |, |, 5'^, |, and y^^j, to the least common denominator.

Ans. .

Reduce |, |, |, /j, |, to the least common denominator.

A71S. .

Greatest Common Divisor.

Find the greatest common divisor of 24 and 36.

Ans. 12

Find the greatest common divisor of 312 and 504.

Ans. 24

Find the greatest common divisor of 9024 and 3760.

Ans. 752,

Find the greatest common divisor of 4410 and 5670.

Ans. 630

Find the greatest common divisor of 3775 and 1000.

Ans.

Find the greatest common divisor of 101 and 859.

Ans.
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Reduction of Fractions to their Simplest Terms.

Reduce
-f^-g^

to its simplest terms. Ans. .

Reduce j|§ to its simplest terms. Ans. |fi.

Reduce |||J to its simplest terms. Ans. j^.

Reduce if-i^^^ to its lowest terms. Ans. ^/gy*

Reduce ff to its lojvest terms. Ans.

Reduce |ij to its lowest terms. Ans.

Addition of Fractions.

Add I, 4, and | together. Ans. Lo_6.

Add I, I,
and ^^ together. Ans.

Add -^^j ^y^j 1, and y together. Ans.

Add j4j, |, |, and 3^^ together. Ans.

Add j\, I, §, and | together. Ans. \i^§.

Conversion of Fractions into Mixed or Entire NumherSj and

vice versd.

Reduce | to its equivalent whole number. Ans.

Reduce -| to a mixed number. Ans. 3^.

Reduce ^5 to a mixed number. Ans. 3|.

Get out the entire part of i^-^. Ans. 24^2^.

Get out the entire number in y. Ans. 12^.

Find the entire part in ^|f
<^. Ans. .

Reduce \%^^ to a whole or mixed number. Ans. .

Bring 144| to a fractiopal form. Ans.

Bring 47 1 to a fractional form. Ans.

Reduce ^Ij^ to a fractional form. Ans. 3_y.

Add Y, I, 3f , 4| together. Ans.

Add 6/2, 2i, 4| together. Ans.

Subtraction of Fractions.

Subtract \ -^ \ from ^ -\- \. Ans.

From I take |. Ans.

From 5| take 4| + |. Ans.

From fi| take -^^. Ans.
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Multiplication of Fractions,

1st. Multiply 4 by 8.

Multiply I by 5.

Multiply 4^ by 3.

Multiply I by 24.

2d. Multiply 7 by J.

Multiply 22 by f
Multiply 15 by I

.

3d. Multiply I by I by f

.

Multiply 3f by 4if

Required the product of 5, |, |, |, and 4.

Required the product of 4^, |,
i, and 18 1.

Division of Fractions.

1st. Divide |f by 9.

Divide 14 by 7.

Divide |i by 37.

2d. Divide 10 by f

.

Divide 7 by f|.

Divide 28 by jf.

Divide 16 by 3%.

3d. Divide | by f
Divide 4^ by 2|.

Divide //, by tII^

Divide 371^ by
:j j^.
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Fractions with Fractional Terms, or Complex Fractions.

41 _t. 5
Reduce | '

^ to a simple fraction.

4.7 1 51

41 -1. 2 4

From ^! ^.7 take

^

25 + 6^ I

27| 4

2
3 "n

Divide i-±4by4|.

Multiply -^ by ^

23 1
"^4 3

Fractions of Fractions ; or, Compound Fractions.

Reduce ^ of | of | to a single fraction.

Reduce \ of | of ^, or | of 20 to a single fraction.

Reduce -\ of ^^ of ^^ to a single fraction.

Add \ of \o to I of |.

Multiply i of I by |J of 2.

Approximate Valuation of Fractions hy means of Fractions

having Smaller Terms.

Value IfI in twelfths.

Find the approximate value ot ||f in ninths.

Find the approximate value of ||| in eighths.

Find the approximate value of ||| in tenths, in hundredths,

in thousands.

Denominate Numbers.

deduction of Compound Numbers.

1st. Reduce 59 lb. 13 dwf. 5 gr., to grains.

Reduce £121 Os. 9^d., to half pence.

Reduce 365 days, bh., 4§', 48", to seconds.

Reduce 5 miles, 3 furlongs, 1 pole, and 2 yards, to yards.

Reduce 375 cwt. 2921b. boz., to ounces.

Reduce 77 A. 1 R. 14 P., to perches.
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2d. Find the compound number of pounds, sHillings, knd

pence, in 5900 pence.

Find the number of tons, cwts., &c., in 36325 Ihs.

Convert 123200 yards into a compound number, whose

principal unit is miles.

How many pounds, ounces, &c., in 704121 grains?

In 5927050 minutes, how many weeks, days, &c. ?

3d. Reduce 25 days, 3 hours, 5 minutes, to the fraction of a

year.

Reduce 3 furlongs, 2 poles, 3 yards, and 2 feet, to the

fraction of a mile.

Reduce 10 Ibs.^ 12 oz., to the fraction of a cwt.

Reduce | a penny to the fraction of a pound.

Reduce 4^ grains to the fraction of a pound Troy.

4th. Convert | of a pound into shillings and pence.

Convert -^^ of a year into days, hours, &c.

Convert | of a mile into a compound number of its lower

denominations.

Convert | of a pound Troy into oz.j dwts.j grs.

Convert
-f^

of a cwt. into its equivalent compound num-

ber.

Addition of Compound Numbers.

Form the following sums :

(1) (2) (3)

£. s. d. yds. ft. inches. lb. oz. drs.

149 14 n 5 2 H 17 15 15

37 11 n 4 1 2| 27 14 11

69 14 7 31 10| 16 13 9

64 13 10 6 1 11 70

47 14 lOi 51 2 5 5 6 n
Add ^ £ and | of a shilling together.

Add I rwt. and ^ of an ounce together.

Add ^ mile, | of a furlong, | of a yard together.
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Subtraction of Compound Numbers

.

(1) (2) (3)

£. s. d. ft). oz. c^r. fur. rod. 3^^.

6 3 10 125 10 13 34 3|
2 10 11 27 1 15 12 39 4
From 2 £ take 10 pence.

From ^ yard take | inch.

From I of a lb. take 2^ grains.

Multiplication of Compound Numbers.

Multiply £1 lis. Qd. by 5.

Multiply £1 17s. Qd. by 63.

What is the cost of 9 cwt. 5 lbs. of sugar, at £1 lis. bd. per

cwt.P

What is the cost of 7 yc7s. 2 /I. 3 in. of cloth, at the price of

£3 6s. 4:d. per yard ?

Multiply 5 feet 6 inches by 10 feet 10 inches.

Multiply 7 yds. 2 feet 3 inches by 11 feet 10 inches.

What is the cost of | yard of cloth, at | £ per yard ?

What is the cost of 2 lbs. ^ oz. of a commodity which costs

2s. ^d. per lb. ?

Division of Compound Numbers.

Divide £69 lis. M. by 9.

Divide £28 2s. \ld. by 6.

Divide 375 miles, 2 fur., 7 poles, 2 yds., 1 foot, 2 in., by 39.

If 9^ yards of cloth cost £4 3s. l\d., what is the price per

yard 't

A man's income is £140 a year ; what is it per diem ?

If 2J yards of cloth cost lO^s., what will | of a yard cost?

If 66 lbs. of sugar cost £4 2s. Ad., what is the price per lb. ?

Divide 126 square feet by 2 feet 10 inches.
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Decimal Fractions.

Numeration of Decimals.

"Write in figures the following numbers :—
Eight, and two thousand seven hundred and seven ten mil-

lionths.

Forty-five, and seventeen hundred thousandths.

One, and one hundred and one billionths.

Twenty-four, and forty-five ten thousandths.

Five thousand six hundred and eighty-two, and two ten mil-

lionths.

Five thousand and one ten millionths.

Five hundred and one ten thousandths.

Addition of Decimals.

Add 0-1257, 25700101, 3256-05, 22-056, 3-25, 2-207, and

0-002256 together.

Add 00009, 1-0436, 3, 0-02, and -028 together.

Add 3-0739, 5867, 000000201, 25-06, 0-6, 0-21, 1-75, and

•003 together.

Add 28-29, 2-829, 0-2829, 311212105-6, 3112, -121056,

4-0003, and -01 together.

Subtraction of Decimals.

From 27-06, subtract 2-05078.

From 36-055, take 0-072530.

From 9, take -9, -09, -009, and -0009, in succession.

From 10-00001, take 0-11111112.

From 27-854, take 25-9999.

Multiplication of Decimals,

Multiply -573005 by -000754.

Multiply 2-01013 by 24.

Multiply -356 by 12000.

Multiply -55 by -55.

Multiply 3 00001 by -00002.
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What is the price of 52-756 yds. of cloth, at 10-06 shillings

per yard ?

What is the compound number of Ihs. oz., &c., in -625 of a

cwt. ?

How many shillings and pence in -3333 of a £ ?

Convert -076 of a mile into yards, &c.

Convert -04678 of .a pound avoirdupois into oz. and dr.

Division of Decimals.

Divide 11-8652 by 2-303.

Divide 34-77421 by 1-03.

Divide -0100001 by -01.

Divide 22-0784 by -002.

Divide 475-28677 by -4, by -04, by -004, by -0004, by

•00004.

Divide 1572-36620 by 980.

Write the respective quotients of 28-79 by 10, 100, 1000,

10000, 100000, -1, -01, -001, -0001, -00001.

Divide -1 by -0001.

Divide 9 by -9, by -09, by -009, by -005, by -00012.

Convert -122 of a shilling into the decimal of a £. .

Convert 98 of a Ih. avoirdupois into the decimal of a cwt.

Divide 94-0369 by 81-022.

Conversion of Vulgar Fractions into Decimals, and some

Miscellaneous Examples.

Reduce | to decimals.

Reduce l| to decimals.

Reduce |£ to decimals.

Reduce j||^ to decimals.

Divide 10 by 563 into five decimal places.

Convert the decimals 0*75, 0*25, 0-5, and 0-225 to their sim-

plest form in vulgar fractions.

Convert 10s. Qd. to the decimal of a £.

Convert 9^ months into the decimal of a year.

Convert 17 hrs. 10 min. 25 sec. to the decimal of a day.

What is the compound number in £5 75 ?

20
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Decimal Denominate Numbers.

What is the price of 82-125 metres of cloth, at $6-76 per

metre.

Multiply 89-767 metres by 2-25 metres.

Divide 66-787 square metres by 10 375 metres.

Convert 53-84 metres into feet.

Convert 520-687 grammes into Ihs. avoirdupois.

Convert 15 feet 6 inches into metres.

Convert 25 lbs. 6 oz. avoirdupois into grammes.

Convert 25° 36' 56" of the sexagesimal division of the circle

into its equivalent in the centesimal.

Convert 209° Fahrenheit's thermometer into its equivalent on

the Centigrade.

Different Systems of Numeration.

Convert 325 and 422 of the decimal system into their equiva-

lent numbers in the nonary system, and multiply them together

in that system.

Convert 101, 233, 22101, of the quaternary system, into their

equivalent numbers in the system whose base is six.

Multiply 3023 by 4012 in the quinary system, and c6nvert

the result into its equivalent in the decimal system.

Add 10011, 1001110, 101101, 101111 of the binary system,

and convert the result into its equivalent in the decimal system.

All the Divisors of a Number.

Find all the divisors of 2820. Number of divisors, 24.

Find all the divisors of 38088. Number of divisors, 36.

Find the divisors of 1764.

Its factors are 2^x3^x7^ No. of divisors^ 27.

Find the prime divisors of 1665. Ans. 3^, 5, 37.

Find the prime divisors of 56700. Ans. 22x 3*X 5'X 7.

Find the prime divisors of 122108 Ans. 2='x7*x89.

Find the prime divisors of 3329- Ans.
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Greatest Common Divisor by Prime Factors.

Find the greatest common divisor of 12321 and 64345 by

prime factors.

Find the G. C. D. of 3775 and 1000.

Find the O. C. D. of 24720 and 4155.

Greatest Common Divisor of Several Numbers.

Find the Gr. C. D. of 1260, 1512, 2016, and 7350, by the

method of prime factors.

Find the a. C. D. of 492, 744, and 1044.

Find the G. C. D. of 216, 408, and 740.

Periodical or Repeating Decimals.

Convert the vulgar fraction | into a periodical decimal.

Convert ^| irto a periodical decimal.

Convert |f | into a periodical decimal.

Convert q^J^j into its periodical decimal.

Find the generatrix or vulgar fraction corresponding to the

decimal 0-99999 Ans. 1.

Find the generatrix of the repeating decimal,

0-012345679012345679 Ans. ^\.

Find the generatrix of 0-987654320987654320 ....

Ans. |fl.

Find the vulgar fraction corresponding to the decimal,

8-927783783 Ans. VeW-
Find the vulgar fraction corresponding to the repeating deci-

mal, 0-36538461538461. Ans.
4.f

Rule of Three.

If I of a yard of cloth costs 10s. Qd., how many yards can be

bought for £13 15s. Qd. ?

If 100 workmen can finish a piece of work in 22 days, how
many will it require to finish the same work in 4 days ?

If 10 cwf. can be carried 54 miles for 27 shillings, how many

pounds can be cariieil 20 miles for the same money ?



232 EXAMPLES.

If 15 yards of stuff, | yard wide, cost 27s. M,, what will 40

yards of the same stuff cost, one yard wide ?

If the keeping a horse costs 87A cents a day, what will it cost

to keep 11 horses for one year ?

A man breaks, owing $14,000-57, his property amounting to

$7840-26. How much will his creditors receive in the dollar ?

Compound Proportion— Reduction to Unity.

If a man travels 150 miles in 4 days, travelling 12 hours a

day, in how many days, travelling 11 hours a day, can he travel

375 miles?

If 150 bushels of corn feed 18 horses 75 days, how many

days will 87 bushels feed 11 horses ?

If 250 men, in 4 days, working 10 hours a day, dig a trench

275 yards long, 3 yards wide, and 2 yards deep, in how many

days, working 9 hours a day, will 25 men dig a trench 430 yards

long, 4 wide, and 3 deep ?

If a regiment of soldiers, consisting of 970 men, consume 350

bushels of wheat in 4 months, how many soldiers will consume

1500 bushels in 3 months, at the same rate ?

If the transportation of 15 cwt., 2 quarters, 72 miles, cost

$5-64, what will the transportation of 5 cwt., 3 qrs., 112 miles,

cost ?

Rule of Simple Interest.

What is the interest on $8079-74, for 5 years, at 6 per cent?

What is the interest on $3750, at 4| per cent, for 5J years ?

What is the interest on $3375, for 5 months, at 6 per cent,

per annum ?

What is the interest on $4500, at 5 per cent, per annum, for

280 days ?
•

AVhat is the interest on $3195-54, for 7 years, 6 months, and

22 days, at 6 per cent, per annum ?

What is the interest on £104^ 3s., for 3J years, at 5 per

cent. ?
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What is the interest on $5556-25, for 2 years, 7 months, 21

, at 4-^- per cent, per annum ?

In what time will $500 bear an interest of $500, at 6 per cent,

per annum?

What must be the rate of interest in order that a sum put out

at interest must double itself in 16 1
years.

What sum put o\it at interest, at the rate of 6 per cent, per

annum, will produce $575 ?

Percentage.

(We add a few questions, the solution of which is a simple

application of the rule of proportion.)

A man invested $12,000, and lost 64 per cent, of it. How
much had he left ?

Two men had each $500. One spends 12^ per cent, of his

money; the other 15 per cent, of his. How many more dollars

did the last spend than the first?

A merchant laid out $250 as follows :— He pays 25 per cent,

of his money for clothes; 30 per cent, of what is left for sugar;

12 per cent, of what is then left for calicoes. How much had

he remaining ?

A man has $750, and spends $85. What per cent, of his

money has he expended ?

Out of a cask of 500 gallons, 60 gallons are drawn. What
per cent, is this ?

If I pay $756-75 for 5 hogsheads of tobacco, and sell them

for $965-25, what per cent, do I gain on the purchase-money?

Rule of Discount.

(Examples to be worked either by the usual rule, or by the

accurate rule of Art. (181).

A. has a note against B. for $5746, payable in 4 months. He
gets it discounted at 7 per cent, per annum. How much does

he receive ?

20*
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A planter sold produce to tlie amount of $12,57^, payable in 6

months. He gets his note discounted at 6 per cent, per annum.

IIow much does he receive ?

For what amount must a note be drawn, payable in 1 year, 3

months, and 5 days, so that, when discounted, its present value

at 7 per cent, per annum shall be ^507*27?

What is the present value of $8250, payable as follows :
—

One-half in 4 months; one-third in 6 months; the rest in 9

months ', the rate of discount being 6 per cent, per annum ?

What is the present value of $50'00, payable in 9 months, the

rate of discount being 4^ per cent, per annum ?

I bought goods for 87500 in cash, and sold them for $9000,

payable by a note in 6 months. What will be my gain, if I dis-

count the note at 6 per cent, per annum ?

Rule of Fellowship.

A. and B. have gained by trading, $230. A. put into stock

$300 ; B. $500. What is each one's share of the profit ?

A. and B. have a joint stock of $4200, of which A. owns

$3600, and B. $600 ; they gain in a year $2000. What is each

one's share of the profits ?

Three merchants, A. B. and C, freight a ship with 4340

tons of coal. A. puts in 1350 tons; B. 875 tons; and C. the

rest. In a storm, the seamen were obliged to throw 500 tons

overboard. How much of the loss must each merchant sustain ?

A. put in trade $500 for 4 months, and B. $600 for 5 months

;

they gained $240. Divide it between them in the compound

ratio of the times and capitals.

Four traders form a company. A puts in $400 for 5 months

;

B. $700 for 8 months; C. $840 for 6 months; D. $1500 for 10

months. They lose $1000. Divide the loss in the composite

ratio of the times and sums invested.

A. put $1500 in trade for 15 months with B., who put in

$1000 for 18 months. They gain $800. Divide the gain in the

ratio of the two sums invested, increased by the interest for the

two period^; at 6 per cent, per annum.
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Rule of Alligation.

A grocer mixes 80 gallons of whiskey, at 37A cents, with 10

gallons of water, costing nothing. What is the price of one

gallon of the mixture.

A man employed 500 workmen, 160 of whom receive wages

at the rate of $2 a day ; 200 at $1-75 ; and 140 at SI -50. What

is the average per diem of each labourer ?

A mixture being made of 5 Ih. of tea, at 6s. per lb. ; 19 lb. at

10s. Qd. per pound; and 15 Z^. at 4s. 9d. per pound. What is

one pound of it worth ?

On a certain day the thermometer indicated the following

temperatures :— From 6 A. M. to 10 A. M., 65°
; from 10 A. M.

to 1 P. M., 76° ', from 1 P. M. to 4 P. M., 87° ; from 4 P. M. to

6 P. M., 70°. What was the mean temperature of the day ?

Some General Questions.

Divide $2000 among A. B. and C, so that B. may have $100

more than A., and C. $70 more than B.

Find two numbers such, that if we add 21 to the first, the re-

sulting sum shall be 5 times the second number; and if we add

21 to the second, the resulting sum shall be three times the first

number.

Two men are travelling on the same road, in. the same direc-

tion ; the first is 50 miles ahead of the second. The first travels

25 miles a day ; the second 35 miles a day. How many days

must elapse before the second shall overtake the first ?

The hour and the minute hands of a clock are exactly toge-

ther, and it is between 4 and 5 o'clock. What o'clock is it

exactly ?

A reservoir of water has two cocks to supply it ; by the first

alone it may be filled in 40 minutes ; by the second, in 50 mi-

nutes; and it has a discharging cock by which it may, when
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full, be emptied in 25 minutes. Now these three cocks being

all left open, in what time will the cistern be filled ?

A father devised 1 of his estate to one of his sons
; | of the

remainder to another ; and the remainder to his wife. The sons'

legacies differed by $500. What did the widow receive ?

There is an island 73 miles in circumference, and three pedes-

trians start together, to travel in the same direction around it.

A. goes 5 miles a day; B. 8; and C. 10. In what time will

they all come together again ?

What number is that from which, if you take | of |, and to

the remainder add ^^ of -i^q, the sum will be 10
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Note A

We have spoken in (135) of the numbers in any system whose

base is h, which possess analogous properties to 9 and 11 in the

decimal system. These numbers are h— 1 and & + 1, and the

properties which they enjoy are the following

:

1st. When the sum of the figures of any number whatever is

divisible by &— 1, this number is itself divisible by h— 1.

2d. Any number is divisible by 5 -f 1, when the difference

between the sum of the figures in the odd places, counting from

the right, and the sum of the figures in the even places is 0, or

a multiple of i + 1.

3d. The remainder of the division of a number by each one

of the two numbers, h— 1 and h -\-l, is obtained in the first

case by the aid of the sum of the figures ; and, in the second

case, by the difference between the two sums of the figures of

the odd places and those of the even places.

We have indicated in (135) how these properties may be

proved.

Algebra furnishes also another means of demonstrating these

properties, founded on the principles,

—

1st. That If— 1 is always divisible by h— 1

.

2d. That If— 1 is divisible by h + 1, when m is an even

number, and 5™ + 1 is divisible by i -f- 1 when m is odd.

We give here the systems of numeration of the Greeks and

Romans, with their notation, the latter being still used to indi-

cate ordinal numbers at the beginning of Chapters, Sections, &c.

(237)
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In the Roman Notation.

One was written with a single mark I.

Two with two marks 11.

Three with three marks Ill,

Four nil.

Five was written IIIII.

And so on, to ten.

Ten was written X.

Two tens XX.
Three tens ,... XXX.

And so on, to ten tens, the intermediate number being written

by combining the two sets of characters. This being too cum-

brous, instead of writing five marks for the number five, they

took the upper half of the ten (X) or (Y), to express it. And
also the convention was adopted (in addition to the one adopted

above, viz., that like characters placed together indicate that the

numbers thereby represented are to be added) that a character

representing a smaller number, placed before a character repre-

senting a larger number, indicated that the first was to be sub-

tracted from the second, and placed after it ; or on the right, is

to be added to it. Thus, Y being five, |Y would be four, and

Yl six, Yll seven, |X nine, XI eleven, &c.

Instead of writing ten X's for one hundred, the character £

was adopted ; the lower half of this, [, represented fifty. Then,

instead of writing four X's for forty, it is written XL ; t^^at is,

fifty less ten ; and sixty is written [X ; seventy, [XX ', eighty,

LXXXj ^^^ ninety, XC- These characters were afterwards re-

placed by the letters which they resembled. I was put for 1

;

V for Y; X for X; L for L J
C for £ ; D for the character re-

presenting five hundred ; and M for one thousand.

The fundamental operations upon numbers can be performed

very readily by the Roman notation, though the notation is by

no means so simple and convenient as the Arabic.
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CCLXVIII.

DCLXXIII.
CXLVII.

MLXXXVIII.

It is obviously most convenient to begin on the right. Adding

the I's, we find eight of them, or one V to be carried, and III

remaining. We set down the III, and add the V to those in

given numbers. We thus obtain three Vs, or one X and one V
remaining, which we set down. We add the X to those in the

given numbers, which come after the L's, taking care to subtract

from this sum according to the convention of the notation, the

X, which, in the third number, comes before L. We thus obtain

three X^s, which, as they do not make one of the denomination

of L, we write down in the result. Adding the L's we obtain

one C and one L, which we write down. Summing up the C's,

we get five C's or one D, which we carry to the next column

;

and, by adding the D's, we get M, or ten hundreds. The

result is then MLXXXVIII. And so on for the other opera-

tions.

The Grreeks used their letters in several different ways to denote

the different numbers. The most general system of notation was

the following :— To express the 9 units, 9 tens and 9 hundreds.

They divided the alphabet into three parts ; but, as the alphabet

contained only 24 letters, three new signs were introduced, <;' for

six, ^ for 90, and 9 for 900. All the numbers less than 1000

were denoted by these letters and signs, with a small mark a

little to the right above them. A similar mark under the letter

represented thousands. Placing one letter after another indicates

that they are to be added together. Thus, a'===l, ^'= 10, )3'= 2,

a^ = 1000, t^ = 10-000, ^',= 2000, c'a'=ll, t'|3'= 12, x'=20,

xV = 21, x^ = 20,000, p'= 100, p, = 100,000, &c., &c., &c.
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Note B.

Abridged Methods of Multiplication and Division.

Questions often arise wliicli require the multiplication of two

numbers containing a considerable number of decimal figures,

while we wish only to regard a small number of the decimal

figures of the product. It is important, then, to have a method

of obtaining the product of any two decimals with the degree of

approximation which the enunciation of the question requires,

without being obliged to calculate all the partial products which

the usual mode of multiplication renders necessary.

This method is the abridged method, which we will now ex-

plain.

Let it be required, for example, to obtain to within less than

one thousandth the product of the two numbers

84-0783647 and 72-46538.

We would attain the end proposed, if we could form a number

which should contain all the thousandths and units of higher

order contained in the total product. This we accomplish in the

following manner

:

Operation Proposed. Verification of the Operation.

84-078364^ 72465380

8356427 ;^46387048

588548548 579723040

16815672 28986152

3363132 1507257

504468 57972

42035 2173

2520 434

672 28

6092-7704^
4

6092-770^0
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We commence by placing fhe multiplier under the multipli-

cand in an inverse order, and so that the figure 2, in the simple

ttnits place, shall fall under the figure of hundred-thousandths

;

that is to say, under the figure holding the second place on the

right of that whose order indicates the degree of approximation

required : then the figure 4 of its tenths falls under the figure of

ten-thousandths of the multiplicand; the figure 6 of its hun-

dredths under the figure of thousandths ; and so on for the rest.

By this arrangement each figure of the multiplier corresponds

to such a figure of the multiplicand, that the product of the two

gives hundred-thousandths. Thus, the figure 7 of the tens of the

multiplier corresponds to the figure of millionths of the multi-

plicand, and their product gives hundred-thousandths. In the

same manner, if there were hundreds in the multiplier, the figure

should be placed under the figure of ten-millionfhs of the multi-

plicand.

Having arranged the numbers thus, we multiply successively

all the figures ^f the multiplicand, beginning on the right by

each one of the figures of the multiplier, not taking any account

of the figures of the multiplicand, which are situated on the

right of the figure by which we are multiplying; and we place

the products (considered as resulting from the multiplication of

two entire numbers), one under the other, so that their simple

units shall fall under each other. We add then all these pro-

ducts, and separate on the right of the sum five decimal figures,

and draw a mark across the last two.

The part on the left of these last two figures is the required

product.

In order to see the reason of this mode of operating, and to

convince ourselves that we obtain thus the desired degree of

approximation, it suffices to remark that, at each partial multi-

plication, we neglect several hundred-thousandths, the summation

of which gives some ten-thousandths of error. But, admitting as

an average, that we commit an error of 5 hundred-thousandths

at each partial multiplication, we see that it would require 10

partial multiplications, or 10 figures in the multiplier, in order

21
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that the error might reach 50 hundred-thousandths, or 5 ten-

thousandths ; and 20 figures in the multiplier, in order that the

error should be 10 ten-thousandths, or one thousaridth.

Verification of the Operation.

In order to verify the result obtained, it is best to pursue the

following method :— We take the multiplier for the multiplicand,

and reciprocally, as the table of operation shows ; and we average

the new multiplier as in the first operation ; we then perform the

partial multiplications in the same manner, except some modifica-

tions, which it is necessary to indicate.

1st. We have placed a on the right of the new multiplicand,

in order that the last figure, 8, of the new multiplier, may have

its correspondent.

2d. We have drawn a line across the first figure, 7, on the

left of this multiplier, as it ought not to give any partial product

according to the rule established above.

3d. In each partial multiplication, we take care to add to the

product of each figure of the multiplier, by the figure above

which corresponds to it immediately, the figure to he carried,

which is the product of this same figure of the multiplier by the

figure which is on its right in the multiplicand.

Thus, in the multiplication by the 4th figure, 7, of the multi-

plier, we have added to the product of 5 by 7 the 2 units which

would have to be carried up from the product of the 3 imme-

diately on the right of the figure 5 by the same figure 7.

4th. Finally, arrived at the figure, 7, of the multiplier, across

which we have drawn a line, we have multiplied it mentally by

the figure 7, which is on its right in the multiplicand, and we

have written the figure, 4, to be carried, of this mental product,

below the preceding product.

This last modification offers two advantages : the first, that it

lessens much the errors committed; and the second, that it

enables us to judge whether it is necessary to alter by a unit the

figure at which the approximation stops, in order to obtain a

more exact result.
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la the example just discussed, we have found 47 for the last

two figures of the first operation, while in the verification we

find 60. All the other figures are the same in both operations.

Then, 6092-771 is the value of the required product to within

less than a thousandth.

We give an example a little more complicated. Let the two

numbers be

1307-510300896472 and 256-10978641,

of which we wish to obtain the product to within less than

000001.

Operation.

1307-510300896^^

14687901652

Yerijicati^.

256-1097864100

^^{^6980030157031

2615020601792 2561097864100

653755150445 768329359230

78450618048 17927685048

1307510300 1280548932

117675927 25610978

9152570 768329

1046008 2048

78450 230

5228 15

130 334866-18389^0

334866-1838^^

The result required is here 334866-18389, to within less than

0-00001.

Example.— Find to within less than 001 the product of the

two numbers 89-91666 and 47-19.

Remark. — The method can be applied equally well to the

approximate multiplication of two entire numbers.



244 NOTES.

Example.— Required the product of 4702564917 by 2305687,

to within less than a million.

470256497-00

7865032

94051299400

14107694910

235128245

28215384

3762058

329175

1084264291^^ 1084264292 millions.

We will certainly obtain the product to within less than a

million, by taking account of the hundreds of thousands and the

tens of thousands; that is, by calculating in the product two

figures more than the number required. In order to do this, we

arrange the multiplier below the multiplicand in an inverse order,

and so that the figure 7, of its simple units, shall fall under the

figure of tens of thousands in the multiplicand ; then, the tens

figure 8, of the multiplier, will fall under the thousands figure

of the multiplicand, &c. Nevertheless, as the figures in the

hundreds of thousands and millions places would not have

corresponding figures in the multiplicand, we supply their places

by two O's annexed.

We can also employ an abridged method of division, when the

dividend and divisor are composed of a great number of figures.

But, as this method requires, in order to be thoroughly discussed,

developments which could not be given here, we will limit our-

selves to giving an idea of the mode of operating. We commence

by remarking that the process for finding the quotient of the

division of two decimal fractions, with a given approximation,

can always be reduced to finding the quotient of the division of

two entire numbers to within less than unity.

For, let it be proposed, for example, to find the quotient of the
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division of 1234*569 by 27-35894 to within less than 0001.

According to the rule for the division of decimals, we must place

two zeros on the right of the dividend, which reduces the opera-

tion to the division of the two numbers,

123456900 and 2735894.

Then, as we wish "to obtain the quotient with three decimal

places, we place three new zeros on the right of the dividend,

and perform the division, taking care only to separate three

figures on the right of the quotient for decimals.

The question is then to find the quotient of 123456900000 by

2735894, and only regarding the entire part of the quotient.

We are then led to explain the rule to be followed in the abridged

division of two entire numbers.

This rule, principally founded upon the fact that, according to

the ordinary method, the determination of each one of the figures

of the quotient most commonly 'depends only on the first two or

three figures on the left of the dividend ; and the first two or

three figures on the left of the divisors can be thus enunciated.

Suppress on the right of the dividend as many figures, less

two, as there are in the divisor ; divide then the part on the left

hy the divisor, and if there is no remainder, annex to the quotient

as many zeros as you have suppressed figures in the divisor.

But if there is a remainder, divide this remainder by the

divisor, with the last figure on the right cut off. Nevertheless, in

the multiplication of the new divisor hy the figure obtained in the

quotient, take care to add the figure to be carried, which the pro-

duct of the figure cut off from the divisor by this figure of the

quotient would give.

Divide then the new remainder by the divisor, with its last two

figures cut off, and proceed as before.

Continue these successive divisions, suppressing at each division

a new figure on the right of the divisor, and stop the operation

ichen the divisor is reduced to its first two figures on the left.

21*
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In order to render this method intelligible, wO'give both the

ordinary and abridged method in the table.

Ordinary Method.

540347056789046

26170115

10919846

"25604697

~5265668

~24792099

2786459

193918897

25004270

"27125984

"20478536

973323

Abridged Method.

5403470567 I
89046

26170115

10919846

"25604697

526566

1939
I
18897

247920

25004

2713

"206

""12

In the second operation, we separate five figures on the right

of the dividend, since there are &even in the divisor; and we

divide the part on the left by the divisor, which gives the first
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four figures of the quotient, 1939, and for the remainder,

526566.

This done, we draw a line across the last figure, 9, of the

divisor, and divide 526566 by 278465; the quotient is 1, by

which we multiply the divisor, adding 1 to the units figure of

the product for the 9 suppressed in the divisor; we then sub-

tract the product from the remainder, and thus obtain the new

remainder, 247920. Cutting off a second figure of the divisor,

we divide 247920 by 27864, and subtract from the dividend the

product of 27864 by the quotient 8, this product being aug-

mented by the 4 to he carried, which the multiplication of 8 by

the figure 5, which we have cut off, would give. We proceed in

the same manner, until we get for the total quotient the number

193918897, the same result which the ordinary method gives.

Let us now apply the process to two decimal fractions, taking

the example proposed above, to find the quotient to within less

than 0-001.

Ordinary Method.

123456900000 2785894

14021140 45124

3416700

6808060

13362720

2419144

Abridged Method.

1234569
I 00000

140212

272^/^0^4

45124

3418

~682

~135

~26
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Having first reduced the operation to that of entire numbers,

we remark, that as the seven figures of the dividend, which re-

main after the suppression of as many figures, less two, as there

are in the divisor, do not contain the divisor, it is necessary in

the commencement to cut off the last figure, 4, of the dividend,

and divide 1234569 by 273589.

We then continue the operation until we obtain 45124, on the

right of which we separate three figures for decimals. This gives

45-124 for the required quotient to within less than 0*001.

THE END.



I The Great Gasetteer. \

\LIPPINCOTT'S
PRONOUNCING

ifilZISTTIER Of THE WURID,:
I

OR

I dengrapljifal lirttouarq,

I
CONTAINING A GREATER AMOUNT OP MATTER THAN ANY OTHER SINGLE

\

'

I
VOLUME IN THE ENGLISH LANGUAGE. ]',

1 Edited by J. THOMAS, M. D., and T. BALDWIN, ;!

assistj:u by several other gentlemen.

The above work, (upon which over five years of contiuued labor and research,

with a large outlay of money, has been expended,) baa not been published merely

to supply the deficiencies of existing Gazetteers, but to furnish a GEOGRAPHICAL
DICTIONARY which should be as comprehensive in its design, as perfect in its

arrangement, and as complete and accurate in its execution aa the best dictionary

OP THE ENGLISn LANGCAQE.

Among the many claims to superiority which this work has over all others of the

kind are the following

:

1st.—It is a PRONOUNCING GAZETTEER, a feature as essential to the com-

pleteness of a Geographical Dictionary as to a dictionabt of the enqusd lanooage.

2d.—It contains above 20,000 more GEoaRAPHiCAX Names than ant other Gazet-

teer OF the World. And the notices of all important places will also be found far

more full and satisfactory than in any other similar work.

3d. In regard to ACCURACY AND RECENTNESS OF INFORMATION, it will be

founi incomparably superior to every other.

We might have hurried this work through the press to forestall others com-

menced long after ours was in progress, b»it we could not be tempted to waive a

single feature of excelhmce requiring time for its perfection.

The"PllO\OUXClXG G.\ZETTEER, OR GEOGRAPHICAL DICTIONARY," con-

t«iu8 above 2100 pages. Price, in strong leather binding, $6.

i Any person remitting $6, will receive the work in two volumes, bound in cloth, J
^ free'of postage. J

I
J. B. LIPPINCOTT & CO., |

I
PUBLISHERS,

J

I
No. 20 Nortb Fourth Street, Philadelphia. |

I
FOR SALE BY

|

I
A L I. B O O K S E L L E II S '

i 4J;S""0UV'EKS R.i^SPErTFUU.T SOI.ICITF.n. i



Webster's ROYAL, OCTAVO Bictioiiary,

UNABRIDGED IN WORDS.
Retail Price, in substantial Binding, $3.50.

PiOYAL OCTAVO DICTIONARY,
REVISED AND ENLARGED,

Containing all the words in the Quarto Edition and an important fea-
ture, not found in any other work — an arrangement of

Synonyms under the leading words.

BY CIIAUI^CJEY A. OOODKICll,
PROFESSOR IN YALE COLLEGE.

Thb demand for an edition of Webster's Dictionary, full, compre-
hensive and of convenient size for daily rgfercnoo, has led to the
preparation of the Royal Octavo. The great favor with which it

has been received, both in this country and England, is the best evi-
dence of the value of the work.
The price brings it within the reach of all who desire a complete

Dictionary.

THIS EDITION EXHIBITS
I. The Origin, Orthography, Pronunciation, and Definitions of all

words acknowledged by the most eminent Lexicographers as properly
belonging to the English Language, with many idioms and phrases
from the Latin and other foreign tongues.

IL An arrangement of Synonyms under the leading words : a new
and characteristic feature, designed to facilitate the practice of correct
and elegant composition, and one not found in any other work.

in. A Synopsis of words differently pronounced by different Ortho-
epists, including Walker, Perry, Jameson, Knowles, Smart, and
Worcester.
IV. Walker's Key to the pronunciation of Greek, Latin, and

Scripture proper names.
V. A Vocabulary of Modera. Geographical Names, with their pro-

nunciation, by J. Thomas, M. D., Editor of " Lippincoit's Pronoun-
cing Gazetteer."

RECOMMENDATIONS.
"It Is the most complete work of tlie kind yet published. The defiDi'tions nr^

clcHr and concise, presentinj; briefly thx VHrious meHiiiiijrs and shades of meaning
belonging to each word. . . . The pronunciiition ia flsitifitnctorily indieat>d, and in

most cases the 8yuoiiyiu8 of the words defined are added, a grw«t advuntagt- to

persfins engaged in literary compositions "
Leeds Thnea.

" To all who wish for the most ciirnplete, clieap and jjortahle Dictionary at

this moment existing of our noble language, including an immense nuiss of plii!u-

logic matter — copious Vocabularies of Scriptural, Mythologic, and GeoirrHphic
names — we can cordially recommend the volume before us." Lundun Alias.

'• The meaning of every Knglish word in all its various shades is given in this

admirable work, and it contains, moreovei- a Uictionary of Syninyms."
/uondon Observer.

" A marvel of nccurncy, neatness imd cheapness. ... It \fi a eontriliusion of

substantial service, not only to our times, but for posterity." Wcsleyan Banner.

J. B. Mri'lNCUTT At CO., Publit-hers, I'hii.adelphia. )



*
POPULAR

SCHOOL BOOKS.
RECENTLY PUBLISHED BY

J. B. LIPPINCOTT & CO.

SMITH'SJERIES.

OEOGRAPHIES.
SMITH'S FIKST BOOK; or, Primary Geography. Designed for Chil-
dren. Illustrated with 126 Engravings, and 30 Maps. New Revised Edition. By K. C.
Smith, A.M.

SMITH'S SECOND BOOK; or, Quarto Geography. A Concise and
Practical System of Geography for Schools. Academies, and families. Desigmed as a Sequel
to I he First Book. Illustrated with 33 Steel Maps, and numerous Engravings. Newly Revised
and Enlarged Edition.

SMITH'S GEOGRAPHY AND ATLAS. Geography on the Productive
Svstem, for Schools, Academies, and Families. Newly Kevised, Illustrated, and Corrected
Edition, embracing 40 pa^es of Ancient Geography, accompanied with a large and valuable
Atlas, containing several new Maps, also a large one of the Roman Empire.

ARITHMETICS.
SMITH'S PRACTICAL AND MENTAL ARITHMETIC; in which Mental

Arithmetic is combined with the use of the Slate: containing a Complete System for all

practical purposes. Stereotype Edition, Revised and Enlarged, with Key. By R. G.Snuth,A.M.

SMITH'S NEW ARITHMETIC; on the Productive System; accompa-
nied by Key and Cubical Blocks.

J WEBSTER'S NEW UNIVERSITY DICTIONARY. By Chauncey A. J
4 Goodrich. D. D. Comprising Walker's Key to tli* Pnmunciatioii of Cliissical and Scripture <

J Proper Names, a Vocabulary of Modem Geographical Name.s. Phrases and Quotations from i
J the Ancient and Modem Languages, Abbreviations used in Writing, Printing. <kc. J

I A NEW LATIN-ENGLISH DICTIONARY, on the basis of the School \
€ Dictionary of Ingerslev : wi;h .Additions from the Le.xicons of Koch and Ktotz. By Georee R. J
> Cnioks, A.M., late of Dickinson College ; and Alexander J. Sclieni, of the University of Bona J} and Tubingen. In one volume, 8vo. In Press. J

> HILL'S ALGEBRA. Elements of Algebra. By Major D. H. Hill, Pro- i
i fessor of JIaihematics in Davidson College, North Carolina. In one volume, 8vo. i

i THE AMERICAN HISTORICAL READER; containing a brief outline |
< of tlie History of the United Slates. For Schools and Famihes. By J. L. Tracy, Author of the €
> American School Manual. 5

* BIBLE READING-BOOK; containing such portions of the Old and New i
i Testamenis as form a connected Narrative, in the exact wbrds of Scripture, and in the order j
/ of the sacred Books; of God s dealings with Man, and Man's duties to God. By Mrs. Sarah >
i J. Hale. In one volume, 12mo. J

I UNION SERIES OF PRIMERS AND READERS. By Mrs. Ellen C.
|

* Woodson, of Charlottesville, Virginia. J

I THE UNION PRIMER, Part I. 1
5 Do. do. Part U. €
> Do. FIK.ST READER. >
} Do. SECOND READER. <
i Do. THIRD READER. J

> CALDWELL'S MANUAL OF ELOCUTION. Seventh edition, enlarged, i

J One volume, 12mo. J

\ GRIMSHAW'S PICTORIAL HISTORY OF THE UNITED STATES, <

J
new Edition, enlarged, with Questions m the Book. J



i VALUABLE SCHOOL BOOKS,

I PUBLISHED BY J. B. LIPPINCOTT & CO., PHILADELPHIA.

SPELLERS.
WEBSTER'S PICIUfUAL SI'ELi.ER.
COMLY'S SipEl.l.lNG HCJOK, Bonsai I'a ed.

TtrK.\<)K\S COLUMBIAN SPELLER
BENTLEY'S PICTORIAL U E F I N E R.

aiOO ruts.

HAZEN-S SPELLER AND DEFINER, uew
eiliiion. eu!ari;e«t.

READERS.
COMLY'S READER AND BOOK OP KNOW-
LEDGE^

BURLEIGH'S AMERFCAN SERIES PRI-
MARY SCHOOL READERS. Nos. I and 2-
LITILE THINKLR-THE THINKER, A
MORAL READER.

AMERICAN MANUAL, by J. B. Burleiph-

ELEMENTS OF THE LAW'S, bv T. J. Smith.
THE BEAUTIES OF HISTORY, by L. M.

Slrelrh, willi inmieriius engravings.

MURRAY'S READER, Urse type.

GRIGG A ELLIOT'S SERIES, Nos. I, 2. 3.4,5.

Pl-ERPONT'S POPULAR SERIES OF SCHOOL
READERS, new revised wlilion, five Nob

ARITHMETICS.
TRACY'S SERIES, comprisuiR The Child's

Arithmetic—The Elementary Arithmetic—
The Practical and Scientific Arithmetic—
Ihe f:kjniniercial and Mechanical Arith-

metic—with Kevs to eiich.

EMERSON'S ARiTHME'l'IC, first and second
part, with Key.

SMILEY'S ARITHMETIC, AND KEY.
TICKNOR'S YOUTH'S COLUMBIAN
CALCULATOR.

TICKNOR'S COLUMBIAN CALCULATOR,
AND KEY.

DICTIONARIES.
WEBSTER'S ELEMENTARY DICTION-
ARY ; or, Sequel to his Spelline Book-

WALKER'S PRONOUNCING DICTIONARY.
GRIMSHAW'S ETYMOLf)GICAL DICTION-

LE.Vir'oN OF TERMS USED IN NATURAL
HISTORY, bv W. S. W. R uschenberger.

BALDWIN'S PRONOUNCING GAZETIEER,
new edition, enlarged.

BALDWIN'S VOCABULARY OF ENGLISH
PRONUNCIATION

GRIMSHAWS GENTLEMEN'S AND
LADIES' LEXICON

HISTORIES.
;
GRIMSHAW'S UNITED STATES, ENG-
lw\ND, GREECE, ROME. FRANCE

SPEAKERS.
THE COLUMBIAN OKAlOR.
THE AM ERICA.N PRHtEPTOR.
WALKER'S MA N I A L OK ELOCUTION
AND ORATORY, by Culver.

MATHEMATICAL.
TICKNOR'S MENSURA IIO.N, wiih Kev
CHaUVENFPS PLANE ANt" SPHERICAL

1 RIGONOMETRY, new edition
BONNYCASTLE'S ALGEBRA, l2nio.

KEY TO do., by James Ryan. 18ino
PLAY FAIR'S tUCLID, De«v edition, revised
and corrected, for the use of Schools and
Colleges in the United Stales, by Jas Ryan

RYAN'S ALGEBRA.

AND
NAPOLEON

CABINET HISTORIES OF ALL THE
STATES.

nRST BOOKS OF NATURAL HISTORY
for Schools. Colledes, and Families, by
W S W Ru.scheiiherKer. M.D,

LARDNER'S K EIGHT LEY'S UNIVERSAL
HIS'TORY. revised . Questions and Enerrav's

BIG LAND'S NATURAL HISTORY, with
Questions.

CLASSICAI. WOllKS.
LATIN AND GREEK.

HORACE DELPHI.VI.
VIRGIL DELPHINI.
LIBER PRIMUS, by Dillaway.
HALDEMAN'S ELEMENTS OF LATIN PRO-
NUNCIATION.

CASS EK LEY'S LATIN PROSODY.
LATIN READER, Parts L and II., with Notea
and Illustrations, 12mo.

MAIR'S INTRODUCTION TO LATIN SYN-
TAX. 12mo.

CICERO DE OFFlCliS, DE SENECTUTE, DE
AMlCn liE, new edit., with Value's Notes

CLEVELAND'S GRECIAN ANTIQUITIES.
GROVE'S GREEK AND ENGLISH DIC-
TIONARY.

WILSON'S GREEK TESTAMENT.
EPITO.ME OF GREEK AND ROMAN MYTH-
OLOGY, with Explanatory Notes and a Voca-
bulary, by John S. Hart, LL.D., 1 vol. 12mo.

LEUSDEN'S GREEK AND LATIN TESTA-
MENT.

JACOB'S GREEK READER, corrected and
improved, with Notes, Additions and Altera
tions, 8vo.

CASSER LEY'S TRANSLATION Of do.

HUTCHINSON'S ZENOPHON
GR/ECA MINORA, Enelish Notes and Lexicon.
v.i.LFY'S GREEK GRAMMAR, ^really en-
larged and improvetl. byChas. Anthon, LLD.

FRENCH AND GERMAN.
WANASTROCHT'S FRENCH GRAM.MAR,
tenth edition, revised.

LE HRUN'S TEI.EMAQUE.
LADREYT'S CHRESTOMATHE FPAN-
CAISE,

LEVIZACS FRENCH GRAMMAR, revised

and corrected by .Mr Steiiben Pn«qiiier, M.A.
LE BRETHON'S FRENCH GRa.MMaR.
RECUEIL CHOISl DE TRAITS HI.STORI-
QUES ET DE CONTES MORaUX, by N.
WanastnKiht.

VOLTAIRE'S HISTORY OF CHARLES XII.
FULBORN'S GERMAN INSTRUCTOR. 12ino.

GRAMMARS
BAILEY'S PRIMARY

for Beginners.
BAILEY'S ENGLISH GRAMMAR,

for Scboi.ls. A-.o.

MURRAY'S EXER'^ISES, l'2mo.

MURRAY'S KEY TO do
ai.AlR'S LECTURES ON RHETORIC. aVd.
VKAGKR'S CLA.'^S HO<»K OF PARSING.

AN HISTORICAL TEXT-BOOK,
AND ATLAS OF BIBLICA L GEOGRaPH Y.

LEKS HUMAN PH VSIOI.OGY. 2l'tb edition,

GRAMMAR,! revised.
I MILTON'S POETICAL WORKS, 2d edition.

roynl 12m«.
NEUMAN AND BA R R ETT'S SPANISH AND
ENGLISH DICTIONARY, T^.iio

LEMPRIERE'S CLASSICAL DICTTuNAKY.
ADAM'S ROMAN ANTTQUITTi;-, „ new r.lit

BLAIR'S LECTURES ON KHKT<-Kir,. nl.rd

^





UNIVERSITY OF CALIFORNIA LIBRARY

THIS BOOK IS DUB ON THE LAST DATE

STAMPED BELOW



iT^
-"'L

V




